Mato Joani, Gordon Mark S
Department of Chemistry , Iowa State University , Ames , Iowa 50011 , United States.
J Phys Chem A. 2019 Feb 14;123(6):1260-1272. doi: 10.1021/acs.jpca.8b11569. Epub 2019 Jan 31.
Analytic nuclear gradients are derived and implemented for the recently introduced SF-ORMAS-CI (spin-flip occupation restricted multiple active space CI) method. Like most SF methods, SF-ORMAS-CI successfully describes bond breaking, diradical systems, transition states, and low-lying excited states, without suffering from spin contamination. The availability of analytic gradients now enables the efficient optimization of equilibrium structures in both ground and excited electronic states, as well as the computation of seminumerical Hessians. Therefore, it is now possible to determine minima, transition states, and conical intersections using the SF-ORMAS-CI method without the need for numerical differentiation. In the present study the SF-ORMAS method and gradient are applied to optimize structures for several organic molecules, such as ethylene, azomethane, and trimethylmethylene. In most cases, structures optimized with SF-ORMAS are almost identical to those obtained using other multireference methods, despite the lack of dynamic correlation in SF-ORMAS.
针对最近引入的SF - ORMAS - CI(自旋翻转占据受限多活性空间CI)方法,推导并实现了分析核梯度。与大多数自旋翻转(SF)方法一样,SF - ORMAS - CI成功地描述了键断裂、双自由基体系、过渡态和低激发态,且不存在自旋污染问题。分析梯度的可用性现在使得在基态和激发电子态下都能高效优化平衡结构,以及计算半数值海森矩阵。因此,现在可以使用SF - ORMAS - CI方法确定极小值、过渡态和锥形交叉点,而无需进行数值微分。在本研究中,将SF - ORMAS方法和梯度应用于优化几种有机分子的结构,如乙烯、偶氮甲烷和三甲基亚甲基。在大多数情况下,尽管SF - ORMAS中缺乏动态相关,但用SF - ORMAS优化的结构与使用其他多参考方法得到的结构几乎相同。