Shi Zhiwei, Preece Daryl, Zhang Chensong, Xiang Yinxiao, Chen Zhigang
Opt Express. 2019 Jan 7;27(1):121-131. doi: 10.1364/OE.27.000121.
We propose a method for generation of tunable three-dimensional (3D) helical lattices with varying helix pitch. In order to change only the lattice helix pitch, a periodically varying phase along the propagation direction is added to the central beam - one of the interference beams for lattice construction. The phase periodicity determines the helix pitch, which can be reconfigured at ease. Furthermore, a helical lattice structure with an interface (domain wall) is also achieved by changing the phase structure of the lateral beams, leading to opposite rotating direction (helicity) on different sides of the interface. When a Gaussian beam is used to probe the bulk lattice, it can evolve into a spiral beam with its helicity varying in accordance with that of the lattice. Probing along the interface with two dipole-like optical beams leads to unusual propagation dynamics, depending on the phase and size of the two beams. This approach could be further explored for studies of nonlinear interface solitons and topological interface states. In addition, the helical lattices may find applications in dynamical multi-beam optical tweezers.
我们提出了一种生成具有可变螺旋间距的可调谐三维(3D)螺旋晶格的方法。为了仅改变晶格螺旋间距,沿传播方向周期性变化的相位被添加到中心光束——用于晶格构建的干涉光束之一。相位周期性决定了螺旋间距,其可以轻松重新配置。此外,通过改变横向光束的相位结构,还可以实现具有界面(畴壁)的螺旋晶格结构,从而在界面的不同侧导致相反的旋转方向(螺旋性)。当使用高斯光束探测体晶格时,它可以演变成螺旋光束,其螺旋性根据晶格的螺旋性而变化。用两个偶极状光束沿界面探测会导致异常的传播动力学,这取决于两束光的相位和大小。这种方法可进一步用于研究非线性界面孤子和拓扑界面态。此外,螺旋晶格可能在动态多光束光镊中找到应用。