Department of Biological Sciences, University of Texas Dallas, Richardson, United States.
Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States.
Elife. 2019 Jan 17;8:e43788. doi: 10.7554/eLife.43788.
PUF (milio/BF) RNA-binding proteins recognize distinct elements. In , PUF-8 binds to an 8-nt motif and restricts proliferation in the germline. Conversely, FBF-2 recognizes a 9-nt element and promotes mitosis. To understand how motif divergence relates to biological function, we first determined a crystal structure of PUF-8. Comparison of this structure to that of FBF-2 revealed a major difference in a central repeat. We devised a modified yeast 3-hybrid screen to identify mutations that confer recognition of an 8-nt element to FBF-2. We identified several such mutants and validated structurally and biochemically their binding to 8-nt RNA elements. Using genome engineering, we generated a mutant animal with a substitution in FBF-2 that confers preferential binding to the PUF-8 element. The mutant largely rescued overproliferation in animals that spontaneously generate tumors in the absence of . This work highlights the critical role of motif length in the specification of biological function.
PUF(百万/BF)RNA 结合蛋白可识别不同的元件。在,PUF-8 与 8-nt 基序结合,并限制生殖细胞的增殖。相反,FBF-2 识别 9-nt 元件并促进有丝分裂。为了了解基序分歧与生物学功能的关系,我们首先确定了 PUF-8 的晶体结构。将该结构与 FBF-2 的结构进行比较,揭示了中央重复序列中的一个主要差异。我们设计了一种改良的酵母 3 杂交筛选方法,以鉴定可赋予 FBF-2 识别 8-nt 元件的突变。我们鉴定了几个这样的突变体,并从结构和生化上验证了它们与 8-nt RNA 元件的结合。利用基因组工程,我们生成了一种 FBF-2 突变的动物,该突变赋予其对 PUF-8 元件的优先结合。该突变体在缺乏的情况下,在自发产生肿瘤的动物中大量挽救了过度增殖。这项工作突出了基序长度在确定生物学功能方面的关键作用。