Wood Hannah M, Parkinson Dilworth Y
Department Entomology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California.
J Morphol. 2019 Feb;280(2):232-243. doi: 10.1002/jmor.20939.
Spiders are important predators in terrestrial ecosystems, yet we know very little about the principal feeding structures of spiders, the chelicerae, which are functionally equivalent to "jaws" or "mandibles" and are an extremely important aspect of spider biology. In particular, members of Palpimanoidea have evolved highly unusual cheliceral morphologies and functions, including high-speed, ballistic movements in mecysmaucheniid spiders, the fastest arachnid movements known thus far, and the elongated, highly maneuverable chelicerae of archaeids that use an attack-at-a-distance strategy. Here, using micro-Computed-Tomography scanning techniques, we perform a comparative study to examine cheliceral muscle morphology in six different spider specimens representing five palpimanoid families. We provide a hypothesis for homology in palpimanoid cheliceral muscles and then compare and contrast these findings with previous studies on other non-palpimanoid spiders. We document and discuss two sets of cheliceral muscles in palpimanoids that have not been previously observed in other spiders or which may represent a position shift compared to other spiders. In the palpimanoids, Palpimanus sp., Huttonia sp., and Colopea sp. showed similar cheliceral muscle anatomy. In Eriauchenius ranavalona, which has highly maneuverable chelicerae, some of the muscles have a more horizontal orientation, and there is a greater degree of cheliceral muscle divergence. In Zearchaea sp. and Aotearoa magna, some muscles have also shifted to a more horizontal orientation, and in Zearchaea sp., a species with a ballistic, high-speed predatory strike, there is a loss of cheliceral muscles. This research is a first step toward understanding cheliceral form and function across spiders.
蜘蛛是陆地生态系统中的重要捕食者,但我们对蜘蛛的主要进食结构——螯肢却知之甚少。螯肢在功能上等同于“ jaws”或“ mandibles”,是蜘蛛生物学的一个极其重要的方面。特别是,栉足蛛总科的成员已经进化出了非常独特的螯肢形态和功能,包括梅氏蛛科蜘蛛的高速弹射运动,这是迄今为止已知的最快的蛛形纲动物运动,以及古蛛科蜘蛛细长且高度可操纵的螯肢,它们采用远距离攻击策略。在这里,我们使用显微计算机断层扫描技术,对代表五个栉足蛛总科家族的六个不同蜘蛛标本的螯肢肌肉形态进行了比较研究。我们提出了栉足蛛总科螯肢肌肉同源性的假设,然后将这些发现与之前对其他非栉足蛛总科蜘蛛的研究进行比较和对比。我们记录并讨论了栉足蛛总科中两组之前在其他蜘蛛中未观察到的螯肢肌肉,或者与其他蜘蛛相比可能代表位置变化的螯肢肌肉。在栉足蛛总科中,Palpimanus sp.、Huttonia sp.和Colopea sp.表现出相似的螯肢肌肉解剖结构。在具有高度可操纵螯肢的拉纳瓦罗纳埃氏蛛中,一些肌肉具有更水平的方向,并且螯肢肌肉的差异程度更大。在Zearchaea sp.和巨澳蛛中,一些肌肉也转移到了更水平的方向,而在具有弹道式高速捕食攻击的Zearchaea sp.中,螯肢肌肉有所缺失。这项研究是朝着理解蜘蛛螯肢的形态和功能迈出的第一步。