School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, People's Republic of China.
Phys Chem Chem Phys. 2019 Jan 30;21(5):2619-2627. doi: 10.1039/c8cp07298a.
Type-II van der Waals (vdW) heterostructures are considered as a class of competitive candidates of high-efficiency photovoltaic materials, due to their spontaneous electron-hole separation. However, most of the vdW heterostructures possess an indirect gap and a large band offset, which would lead to low photon-to-electron conversion efficiency. Taking an SbI3/BiI3 vdW heterostructure as an illustrative example, we propose interlayer compression and vertical electric field application as two effective strategies to modulate the electronic and photovoltaic properties of type-II vdW heterostructures. Our results reveal that a lattice-matched SbI3/BiI3 vdW heterostructure has an indirect band gap of 1.34 eV with the conduction band minimum (CBM) at the Γ point and the valence band maximum (VBM) between the Γ and M points. The power conversion efficiency (PCE) of an SbI3/BiI3-based excitonic solar cell (XSC) is predicted to be about 14.42%. When compressing the heterostructure along the vdW gap direction, the highest valence band state at the Γ point is lifted significantly and the VBM gradually approaches the Γ point, implying an indirect-direct gap transition. This interesting evolution can be attributed to the increasing k-dependent electronic hybridization of the pz orbitals of interlayer adjacent I atoms with a reduced interlayer distance. Moreover, the interlayer compression also enhances the PCE of the system monotonically. When applying a vertical electric field, the band alignment of the heterostructure undergoes a transition from type-II to type-I and then returns to type-II between 0.1 and 0.6 V Å-1. Meanwhile, the PCE of the SbI3/BiI3 XSC could be enhanced up to 21.63%. This work provides guidance for improving the electronic and photovoltaic properties of type-II vdW heterostructures.
II 型范德华(vdW)异质结由于其自发的电子-空穴分离,被认为是一类高效光伏材料的候选者。然而,大多数 vdW 异质结具有间接带隙和大的带隙偏移,这将导致低的光子-电子转换效率。以 SbI3/BiI3 vdW 异质结为例,我们提出了层间压缩和垂直电场应用作为两种有效策略来调节 II 型 vdW 异质结的电子和光伏性质。我们的结果表明,晶格匹配的 SbI3/BiI3 vdW 异质结具有 1.34 eV 的间接带隙,导带最小值(CBM)位于 Γ 点,价带最大值(VBM)位于 Γ 和 M 点之间。基于 SbI3/BiI3 的激子太阳能电池(XSC)的功率转换效率(PCE)预计约为 14.42%。当沿 vdW 间隙方向压缩异质结时,Γ 点的最高价带态显著升高,VBM 逐渐接近 Γ 点,表明间接-直接带隙跃迁。这种有趣的演化可以归因于层间相邻 I 原子的 pz 轨道的 k 相关电子杂化随着层间距离的减小而增加。此外,层间压缩也单调地增强了系统的 PCE。当施加垂直电场时,异质结的能带排列从 II 型转变为 I 型,然后在 0.1 和 0.6 V Å-1 之间返回到 II 型。同时,SbI3/BiI3 XSC 的 PCE 可以提高到 21.63%。这项工作为改善 II 型 vdW 异质结的电子和光伏性质提供了指导。