Suppr超能文献

在单分子水平上,肌动蛋白丝的力历史依赖性和循环机械增强。

Force-history dependence and cyclic mechanical reinforcement of actin filaments at the single molecular level.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

Departments of Pathology and Cell Biology, Emory University, Atlanta, GA 30322, USA

出版信息

J Cell Sci. 2019 Feb 4;132(4):jcs216911. doi: 10.1242/jcs.216911.

Abstract

The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.

摘要

肌动蛋白细胞骨架会随时间受到动态机械力的影响,力加载的历史可能作为机械预处理。虽然已知肌动蛋白细胞骨架对机械敏感,但力调节肌动蛋白动力学的机制仍需要阐明。在这里,我们使用原子力显微镜研究了一系列动态拉伸力下的肌动蛋白解聚。循环拉伸力的机械加载显著增加了键的寿命,并且不同的力加载历史导致 G-肌动蛋白-G-肌动蛋白和 G-肌动蛋白-F-肌动蛋白相互作用的不同解离动力学。在动态力下,纤维两端的肌动蛋白亚基以不同的动力学形成键,与纤维的棘突端相比,周期性机械增强在纤维的尖端更为有效。我们的数据表明,肌动蛋白-肌动蛋白键具有力历史依赖性增强,并且在周期性拉伸力下肌动蛋白解聚动力学具有极性。肌动蛋白的这些特性可能是理解肌动蛋白依赖的机械转导和机械敏感细胞骨架动力学的调节机制的重要线索。本文有一篇与论文第一作者的第一人称访谈。

相似文献

2
Structures of the free and capped ends of the actin filament.
Science. 2023 Jun 23;380(6651):1287-1292. doi: 10.1126/science.adg6812. Epub 2023 May 25.
3
Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5022-7. doi: 10.1073/pnas.1218407110. Epub 2013 Mar 4.
4
Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study.
EMBO J. 2006 Nov 29;25(23):5626-33. doi: 10.1038/sj.emboj.7601395. Epub 2006 Nov 16.
5
The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure.
Curr Top Membr. 2013;72:39-88. doi: 10.1016/B978-0-12-417027-8.00002-7.
8
Conformation of actin subunits at the barbed and pointed ends of F-actin with and without capping proteins.
Cytoskeleton (Hoboken). 2023 Sep-Oct;80(9-10):309-312. doi: 10.1002/cm.21770. Epub 2023 Aug 26.
9
Mechanism of actin filament pointed-end capping by tropomodulin.
Science. 2014 Jul 25;345(6195):463-7. doi: 10.1126/science.1256159.
10
Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex.
Biomech Model Mechanobiol. 2020 Oct;19(5):1509-1521. doi: 10.1007/s10237-019-01284-5. Epub 2020 Jan 21.

引用本文的文献

1
Force-Regulated Spontaneous Conformational Changes of Integrins αβ and αβ.
ACS Nano. 2024 Jan 9;18(1):299-313. doi: 10.1021/acsnano.3c06253. Epub 2023 Dec 17.
3
Vinculin Y822 is an important determinant of ligand binding.
J Cell Sci. 2023 Jun 15;136(12). doi: 10.1242/jcs.260104. Epub 2023 Jun 14.
4
Intermittent F-actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis.
Research (Wash D C). 2023;6:0080. doi: 10.34133/research.0080. Epub 2023 Mar 15.
5
Immune-mediated alopecias and their mechanobiological aspects.
Cells Dev. 2022 Jun;170:203793. doi: 10.1016/j.cdev.2022.203793. Epub 2022 May 29.
6
Dynamics of the Actin Cytoskeleton at Adhesion Complexes.
Biology (Basel). 2021 Dec 30;11(1):52. doi: 10.3390/biology11010052.
8
When Stiffness Matters: Mechanosensing in Heart Development and Disease.
Front Cell Dev Biol. 2020 May 25;8:334. doi: 10.3389/fcell.2020.00334. eCollection 2020.
9
From cellular to molecular mechanobiology.
APL Bioeng. 2020 Feb 14;4(1):010902. doi: 10.1063/1.5129937. eCollection 2020 Mar.
10
Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex.
Biomech Model Mechanobiol. 2020 Oct;19(5):1509-1521. doi: 10.1007/s10237-019-01284-5. Epub 2020 Jan 21.

本文引用的文献

1
Actin and Actin-Binding Proteins.
Cold Spring Harb Perspect Biol. 2016 Aug 1;8(8):a018226. doi: 10.1101/cshperspect.a018226.
2
Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5022-7. doi: 10.1073/pnas.1218407110. Epub 2013 Mar 4.
3
Cyclic mechanical reinforcement of integrin-ligand interactions.
Mol Cell. 2013 Mar 28;49(6):1060-8. doi: 10.1016/j.molcel.2013.01.015. Epub 2013 Feb 14.
5
Stretching actin filaments within cells enhances their affinity for the myosin II motor domain.
PLoS One. 2011;6(10):e26200. doi: 10.1371/journal.pone.0026200. Epub 2011 Oct 13.
7
Effect of tensile force on the mechanical behavior of actin filaments.
J Biomech. 2011 Jun 3;44(9):1776-81. doi: 10.1016/j.jbiomech.2011.04.012. Epub 2011 May 4.
8
Structural basis for the slow dynamics of the actin filament pointed end.
EMBO J. 2011 Apr 6;30(7):1230-7. doi: 10.1038/emboj.2011.48. Epub 2011 Mar 4.
10
Cyclic hardening in bundled actin networks.
Nat Commun. 2010;1:134. doi: 10.1038/ncomms1134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验