Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Departments of Pathology and Cell Biology, Emory University, Atlanta, GA 30322, USA
J Cell Sci. 2019 Feb 4;132(4):jcs216911. doi: 10.1242/jcs.216911.
The actin cytoskeleton is subjected to dynamic mechanical forces over time and the history of force loading may serve as mechanical preconditioning. While the actin cytoskeleton is known to be mechanosensitive, the mechanisms underlying force regulation of actin dynamics still need to be elucidated. Here, we investigated actin depolymerization under a range of dynamic tensile forces using atomic force microscopy. Mechanical loading by cyclic tensile forces induced significantly enhanced bond lifetimes and different force-loading histories resulted in different dissociation kinetics in G-actin-G-actin and G-actin-F-actin interactions. Actin subunits at the two ends of filaments formed bonds with distinct kinetics under dynamic force, with cyclic mechanical reinforcement more effective at the pointed end compared to that at the barbed end. Our data demonstrate force-history dependent reinforcement in actin-actin bonds and polarity of the actin depolymerization kinetics under cyclic tensile forces. These properties of actin may be important clues to understanding regulatory mechanisms underlying actin-dependent mechanotransduction and mechanosensitive cytoskeletal dynamics.This article has an associated First Person interview with the first author of the paper.
肌动蛋白细胞骨架会随时间受到动态机械力的影响,力加载的历史可能作为机械预处理。虽然已知肌动蛋白细胞骨架对机械敏感,但力调节肌动蛋白动力学的机制仍需要阐明。在这里,我们使用原子力显微镜研究了一系列动态拉伸力下的肌动蛋白解聚。循环拉伸力的机械加载显著增加了键的寿命,并且不同的力加载历史导致 G-肌动蛋白-G-肌动蛋白和 G-肌动蛋白-F-肌动蛋白相互作用的不同解离动力学。在动态力下,纤维两端的肌动蛋白亚基以不同的动力学形成键,与纤维的棘突端相比,周期性机械增强在纤维的尖端更为有效。我们的数据表明,肌动蛋白-肌动蛋白键具有力历史依赖性增强,并且在周期性拉伸力下肌动蛋白解聚动力学具有极性。肌动蛋白的这些特性可能是理解肌动蛋白依赖的机械转导和机械敏感细胞骨架动力学的调节机制的重要线索。本文有一篇与论文第一作者的第一人称访谈。