Suppr超能文献

该属基因组中有超过 18000 种效应物,为在人类细胞中复制提供了多种独立的组合。

More than 18,000 effectors in the genus genome provide multiple, independent combinations for replication in human cells.

机构信息

Institut Pasteur, Biologie des Bactéries Intracellulaires, 75724 Paris, France;

CNRS UMR 3525, 75724 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2265-2273. doi: 10.1073/pnas.1808016116. Epub 2019 Jan 18.

Abstract

The genus comprises 65 species, among which is a human pathogen causing severe pneumonia. To understand the evolution of an environmental to an accidental human pathogen, we have functionally analyzed 80 genomes spanning 58 species. Uniquely, an immense repository of 18,000 secreted proteins encoding 137 different eukaryotic-like domains and over 200 eukaryotic-like proteins is paired with a highly conserved type IV secretion system (T4SS). Specifically, we show that eukaryotic Rho- and Rab-GTPase domains are found nearly exclusively in eukaryotes and Translocation assays for selected Rab-GTPase proteins revealed that they are indeed T4SS secreted substrates. Furthermore, F-box, U-box, and SET domains were present in >70% of all species, suggesting that manipulation of host signal transduction, protein turnover, and chromatin modification pathways are fundamental intracellular replication strategies for legionellae. In contrast, the Sec-7 domain was restricted to and seven other species, indicating effector repertoire tailoring within different amoebae. Functional screening of 47 species revealed 60% were competent for intracellular replication in THP-1 cells, but interestingly, this phenotype was associated with diverse effector assemblages. These data, combined with evolutionary analysis, indicate that the capacity to infect eukaryotic cells has been acquired independently many times within the genus and that a highly conserved yet versatile T4SS secretes an exceptional number of different proteins shaped by interdomain gene transfer. Furthermore, we revealed the surprising extent to which legionellae have coopted genes and thus cellular functions from their eukaryotic hosts, providing an understanding of how dynamic reshuffling and gene acquisition have led to the emergence of major human pathogens.

摘要

该属包含 65 个种,其中 是一种引起严重肺炎的人类病原体。为了了解从环境病原体到偶然的人类病原体的进化,我们对跨越 58 个种的 80 个基因组进行了功能分析。独特的是,拥有 18000 种分泌蛋白的巨大储存库,编码 137 种不同的真核样结构域和 200 多种真核样蛋白,与高度保守的 IV 型分泌系统(T4SS)配对。具体来说,我们表明,真核 Rho 和 Rab-GTPase 结构域几乎只存在于真核生物中,并且针对选定 Rab-GTPase 蛋白的转位测定表明,它们确实是 T4SS 分泌的底物。此外,F-box、U-box 和 SET 结构域存在于超过 70%的所有种中,表明宿主信号转导、蛋白质周转和染色质修饰途径的操纵是军团菌体内复制的基本策略。相比之下,Sec-7 结构域仅局限于 和其他七种种,表明在不同的变形虫中效应器谱的剪裁。对 47 个种的功能筛选表明,60%能够在 THP-1 细胞中进行细胞内复制,但有趣的是,这种表型与多样化的效应器组合有关。这些数据与进化分析相结合,表明感染真核细胞的能力已在属内多次独立获得,并且高度保守但多功能的 T4SS 分泌了由结构域间基因转移塑造的异常数量的不同蛋白质。此外,我们揭示了军团菌从其真核宿主中大量摄取基因和细胞功能的程度,这为理解动态重排和基因获得如何导致主要人类病原体的出现提供了线索。

相似文献

1
More than 18,000 effectors in the genus genome provide multiple, independent combinations for replication in human cells.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2265-2273. doi: 10.1073/pnas.1808016116. Epub 2019 Jan 18.
2
Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella.
Microbes Infect. 2019 Jun-Jul;21(5-6):230-236. doi: 10.1016/j.micinf.2019.06.012. Epub 2019 Jun 25.
3
Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella.
Genes Immun. 2019 May;20(5):394-402. doi: 10.1038/s41435-019-0074-z. Epub 2019 May 4.
5
A Legionella effector acquired from protozoa is involved in sphingolipids metabolism and is targeted to the host cell mitochondria.
Cell Microbiol. 2009 Aug;11(8):1219-35. doi: 10.1111/j.1462-5822.2009.01328.x. Epub 2009 Apr 27.
9
Divergent Evolution of RCC1 Repeat Effectors Defines the Range of Ran GTPase Cycle Targets.
mBio. 2020 Mar 24;11(2):e00405-20. doi: 10.1128/mBio.00405-20.

引用本文的文献

2
The extended mobility of plasmids.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf652.
3
Host-Specific Adaptation of Legionella pneumophila to Single and Multiple Hosts.
Mol Biol Evol. 2025 Jul 30;42(8). doi: 10.1093/molbev/msaf161.
4
Seasonal Host Shifts for Legionella Within an Industrial Water-Cooling System.
Environ Microbiol Rep. 2025 Aug;17(4):e70132. doi: 10.1111/1758-2229.70132.
5
Versatile regulation of effectors by novel orthologous regulators in the genus.
mBio. 2025 Jul 9;16(7):e0126825. doi: 10.1128/mbio.01268-25. Epub 2025 May 30.
7
Transcription factors DksA and PsrA are synergistic contributors to virulence in protozoa.
Microbiology (Reading). 2025 Apr;171(4). doi: 10.1099/mic.0.001551.

本文引用的文献

1
Secreted phospholipases of the lung pathogen Legionella pneumophila.
Int J Med Microbiol. 2018 Jan;308(1):168-175. doi: 10.1016/j.ijmm.2017.10.002. Epub 2017 Oct 28.
3
RAS Proteins and Their Regulators in Human Disease.
Cell. 2017 Jun 29;170(1):17-33. doi: 10.1016/j.cell.2017.06.009.
4
Draft Genome Sequence of Legionella jamestowniensis Isolated from a Patient with Chronic Respiratory Disease.
Genome Announc. 2016 Sep 15;4(5):e01007-16. doi: 10.1128/genomeA.01007-16.
5
Dynamics of genome change among Legionella species.
Sci Rep. 2016 Sep 16;6:33442. doi: 10.1038/srep33442.
6
Legionella pneumophila S1P-lyase targets host sphingolipid metabolism and restrains autophagy.
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1901-6. doi: 10.1073/pnas.1522067113. Epub 2016 Feb 1.
7
Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires.
Nat Genet. 2016 Feb;48(2):167-75. doi: 10.1038/ng.3481. Epub 2016 Jan 11.
8
Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy.
Nat Rev Microbiol. 2016 Jan;14(1):5-19. doi: 10.1038/nrmicro.2015.1. Epub 2015 Nov 23.
9
Extensive in silico analysis of Mimivirus coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis.
Front Microbiol. 2015 Sep 15;6:929. doi: 10.3389/fmicb.2015.00929. eCollection 2015.
10
Formation of a pathogen vacuole according to Legionella pneumophila: how to kill one bird with many stones.
Cell Microbiol. 2015 Jul;17(7):935-50. doi: 10.1111/cmi.12450. Epub 2015 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验