Suppr超能文献

将多功能基本螺旋-环-螺旋转录因子定位于文昌鱼脊索基因调控网络中。

Positioning a multifunctional basic helix-loop-helix transcription factor within the Ciona notochord gene regulatory network.

机构信息

Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA.

Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E 24th Street, New York, NY 10010, USA.

出版信息

Dev Biol. 2019 Apr 15;448(2):119-135. doi: 10.1016/j.ydbio.2019.01.002. Epub 2019 Jan 18.

Abstract

In a multitude of organisms, transcription factors of the basic helix-loop-helix (bHLH) family control the expression of genes required for organ development and tissue differentiation. The functions of different bHLH transcription factors in the specification of nervous system and paraxial mesoderm have been widely investigated in various model systems. Conversely, the knowledge of the role of these regulators in the development of the axial mesoderm, the embryonic territory that gives rise to the notochord, and the identities of their target genes, remain still fragmentary. Here we investigated the transcriptional regulation and target genes of Bhlh-tun1, a bHLH transcription factor expressed in the developing Ciona notochord as well as in additional embryonic territories that contribute to the formation of both larval and adult structures. We describe its possible role in notochord formation, its relationship with the key notochord transcription factor Brachyury, and suggest molecular mechanisms through which Bhlh-tun1 controls the spatial and temporal expression of its effectors.

摘要

在众多生物体中,碱性螺旋-环-螺旋(bHLH)家族的转录因子控制着器官发育和组织分化所需基因的表达。不同 bHLH 转录因子在神经系统和轴旁中胚层特化中的功能已在各种模式系统中得到广泛研究。相反,这些调节因子在轴向中胚层发育中的作用、产生脊索的胚胎区域以及它们的靶基因的特征,仍然知之甚少。在这里,我们研究了 Bhlh-tun1 的转录调控和靶基因,Bhlh-tun1 是一种在发育中的海鞘脊索中表达的 bHLH 转录因子,也在其他有助于幼虫和成年结构形成的胚胎区域中表达。我们描述了它在脊索形成中的可能作用、它与关键脊索转录因子 Brachyury 的关系,并提出了 Bhlh-tun1 控制其效应物时空表达的分子机制。

相似文献

1
Positioning a multifunctional basic helix-loop-helix transcription factor within the Ciona notochord gene regulatory network.
Dev Biol. 2019 Apr 15;448(2):119-135. doi: 10.1016/j.ydbio.2019.01.002. Epub 2019 Jan 18.
2
Brachyury controls notochord fate as part of a feed-forward network.
Development. 2021 Feb 5;148(3):dev195230. doi: 10.1242/dev.195230.
3
The notochord gene regulatory network in chordate evolution: Conservation and divergence from Ciona to vertebrates.
Curr Top Dev Biol. 2020;139:325-374. doi: 10.1016/bs.ctdb.2020.01.002. Epub 2020 Feb 12.
6
Functional and evolutionary insights from the notochord transcriptome.
Development. 2017 Sep 15;144(18):3375-3387. doi: 10.1242/dev.156174.
9
Enhancer activities of amphioxus Brachyury genes in embryos of the ascidian, Ciona intestinalis.
Genesis. 2018 Aug;56(8):e23240. doi: 10.1002/dvg.23240. Epub 2018 Aug 23.
10
The Ciona Notochord Gene Regulatory Network.
Results Probl Cell Differ. 2018;65:163-184. doi: 10.1007/978-3-319-92486-1_9.

引用本文的文献

1
Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network.
Integr Comp Biol. 2024 Nov 21;64(5):1194-1213. doi: 10.1093/icb/icae084.
3
Searching for marine embryos, finding my path.
Genesis. 2023 Nov;61(6):e23576. doi: 10.1002/dvg.23576. Epub 2023 Nov 22.
4
Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum.
BMC Ecol Evol. 2023 Oct 27;23(1):63. doi: 10.1186/s12862-023-02167-1.
6
Single-cell analysis of cell fate bifurcation in the chordate Ciona.
BMC Biol. 2021 Aug 31;19(1):180. doi: 10.1186/s12915-021-01122-0.
7
The Degenerate Tale of Ascidian Tails.
Integr Comp Biol. 2021 Sep 8;61(2):358-369. doi: 10.1093/icb/icab022.

本文引用的文献

1
Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis.
Evodevo. 2019 Mar 5;10:3. doi: 10.1186/s13227-019-0116-7. eCollection 2019.
2
Functional and evolutionary insights from the notochord transcriptome.
Development. 2017 Sep 15;144(18):3375-3387. doi: 10.1242/dev.156174.
3
The crystal structure of the AhRR-ARNT heterodimer reveals the structural basis of the repression of AhR-mediated transcription.
J Biol Chem. 2017 Oct 27;292(43):17609-17616. doi: 10.1074/jbc.M117.812974. Epub 2017 Sep 13.
6
MLKL forms cation channels.
Cell Res. 2016 May;26(5):517-28. doi: 10.1038/cr.2016.26. Epub 2016 Apr 1.
7
Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord.
PLoS Genet. 2015 Dec 18;11(12):e1005730. doi: 10.1371/journal.pgen.1005730. eCollection 2015 Dec.
8
Msxb is a core component of the genetic circuitry specifying the dorsal and ventral neurogenic midlines in the ascidian embryo.
Dev Biol. 2016 Jan 1;409(1):277-287. doi: 10.1016/j.ydbio.2015.11.009. Epub 2015 Nov 18.
9
E Proteins and ID Proteins: Helix-Loop-Helix Partners in Development and Disease.
Dev Cell. 2015 Nov 9;35(3):269-80. doi: 10.1016/j.devcel.2015.10.019.
10
ANISEED 2015: a digital framework for the comparative developmental biology of ascidians.
Nucleic Acids Res. 2016 Jan 4;44(D1):D808-18. doi: 10.1093/nar/gkv966. Epub 2015 Sep 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验