Suppr超能文献

帕金森病诊断中无线电能传输(WPT)与梅尔频率倒谱系数(MFCC)特征提取的融合

Fusion of WPT and MFCC feature extraction in Parkinson's disease diagnosis.

作者信息

Kuresan Harisudha, Samiappan Dhanalakshmi, Masunda Sam

出版信息

Technol Health Care. 2019;27(4):363-372. doi: 10.3233/THC-181306.

Abstract

BACKGROUND

Parkinson's disease (PD) is a neurological disorder, progressive in nature. In order to provide customized patient care, diagnosis and monitoring using smart gadgets, smartphones, and smartwatches, there is a need for a system that works in natural as well as controlled environments.

OBJECTIVE AND METHODS

The primary purpose is to record speech signal, and identify whether the speech signal is Parkinson or not. For this work, a comparison of three feature extraction methods, i.e. Wavelet Packets, MFCC, and a fusion of MFCC and WPT, were carried out. Apart from the feature extraction, two classifiers were used, i.e. HMM and SVM.

RESULTS

In this study, a fusion of MFCC, WPT with HMM shows the best performance parameters.

CONCLUSION

The best of the three feature extraction and classifier results are described in this paper.

摘要

背景

帕金森病(PD)是一种神经系统疾病,具有进行性特征。为了使用智能设备、智能手机和智能手表提供定制化的患者护理、诊断和监测,需要一个能在自然环境和受控环境中都能工作的系统。

目的和方法

主要目的是记录语音信号,并识别该语音信号是否为帕金森病相关语音。为此项工作,对三种特征提取方法进行了比较,即小波包、梅尔频率倒谱系数(MFCC)以及MFCC与小波包变换(WPT)的融合。除了特征提取,还使用了两种分类器,即隐马尔可夫模型(HMM)和支持向量机(SVM)。

结果

在本研究中,MFCC、WPT与HMM的融合显示出最佳性能参数。

结论

本文描述了三种特征提取和分类器结果中的最佳结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验