Kuresan Harisudha, Samiappan Dhanalakshmi, Masunda Sam
Technol Health Care. 2019;27(4):363-372. doi: 10.3233/THC-181306.
Parkinson's disease (PD) is a neurological disorder, progressive in nature. In order to provide customized patient care, diagnosis and monitoring using smart gadgets, smartphones, and smartwatches, there is a need for a system that works in natural as well as controlled environments.
The primary purpose is to record speech signal, and identify whether the speech signal is Parkinson or not. For this work, a comparison of three feature extraction methods, i.e. Wavelet Packets, MFCC, and a fusion of MFCC and WPT, were carried out. Apart from the feature extraction, two classifiers were used, i.e. HMM and SVM.
In this study, a fusion of MFCC, WPT with HMM shows the best performance parameters.
The best of the three feature extraction and classifier results are described in this paper.
帕金森病(PD)是一种神经系统疾病,具有进行性特征。为了使用智能设备、智能手机和智能手表提供定制化的患者护理、诊断和监测,需要一个能在自然环境和受控环境中都能工作的系统。
主要目的是记录语音信号,并识别该语音信号是否为帕金森病相关语音。为此项工作,对三种特征提取方法进行了比较,即小波包、梅尔频率倒谱系数(MFCC)以及MFCC与小波包变换(WPT)的融合。除了特征提取,还使用了两种分类器,即隐马尔可夫模型(HMM)和支持向量机(SVM)。
在本研究中,MFCC、WPT与HMM的融合显示出最佳性能参数。
本文描述了三种特征提取和分类器结果中的最佳结果。