Suppr超能文献

multiHiCcompare:复杂 Hi-C 实验的联合标准化和比较分析。

multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments.

机构信息

Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.

出版信息

Bioinformatics. 2019 Sep 1;35(17):2916-2923. doi: 10.1093/bioinformatics/btz048.

Abstract

MOTIVATION

With the development of chromatin conformation capture technology and its high-throughput derivative Hi-C sequencing, studies of the three-dimensional interactome of the genome that involve multiple Hi-C datasets are becoming available. To account for the technology-driven biases unique to each dataset, there is a distinct need for methods to jointly normalize multiple Hi-C datasets. Previous attempts at removing biases from Hi-C data have made use of techniques which normalize individual Hi-C datasets, or, at best, jointly normalize two datasets.

RESULTS

Here, we present multiHiCcompare, a cyclic loess regression-based joint normalization technique for removing biases across multiple Hi-C datasets. In contrast to other normalization techniques, it properly handles the Hi-C-specific decay of chromatin interaction frequencies with the increasing distance between interacting regions. multiHiCcompare uses the general linear model framework for comparative analysis of multiple Hi-C datasets, adapted for the Hi-C-specific decay of chromatin interaction frequencies. multiHiCcompare outperforms other methods when detecting a priori known chromatin interaction differences from jointly normalized datasets. Applied to the analysis of auxin-treated versus untreated experiments, and CTCF depletion experiments, multiHiCcompare was able to recover the expected epigenetic and gene expression signatures of loss of chromatin interactions and reveal novel insights.

AVAILABILITY AND IMPLEMENTATION

multiHiCcompare is freely available on GitHub and as a Bioconductor R package https://bioconductor.org/packages/multiHiCcompare.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

随着染色质构象捕获技术及其高通量衍生技术 Hi-C 测序的发展,涉及多个 Hi-C 数据集的基因组三维互作组的研究变得可行。为了解决每个数据集特有的技术驱动偏差问题,需要有一种独特的方法来联合归一化多个 Hi-C 数据集。以前从 Hi-C 数据中去除偏差的尝试利用了归一化单个 Hi-C 数据集的技术,或者最多只能联合归一化两个数据集。

结果

在这里,我们提出了 multiHiCcompare,这是一种基于循环局部回归的联合归一化技术,用于去除多个 Hi-C 数据集之间的偏差。与其他归一化技术不同,它正确处理了 Hi-C 特有的染色质相互作用频率随相互作用区域之间距离增加而衰减的问题。multiHiCcompare 使用广义线性模型框架进行多个 Hi-C 数据集的比较分析,适用于染色质相互作用频率的 Hi-C 特定衰减。当从联合归一化数据集中检测到先验已知的染色质相互作用差异时,multiHiCcompare 的表现优于其他方法。在分析生长素处理与未处理的实验和 CTCF 耗竭实验时,multiHiCcompare 能够恢复预期的染色质相互作用丧失的表观遗传和基因表达特征,并揭示新的见解。

可用性和实现

multiHiCcompare 可在 GitHub 上免费获得,并作为 Bioconductor R 包 https://bioconductor.org/packages/multiHiCcompare 提供。

补充信息

补充数据可在 Bioinformatics 在线获得。

相似文献

1
multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments.
Bioinformatics. 2019 Sep 1;35(17):2916-2923. doi: 10.1093/bioinformatics/btz048.
2
HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
BMC Bioinformatics. 2018 Jul 31;19(1):279. doi: 10.1186/s12859-018-2288-x.
3
R Tutorial: Detection of Differentially Interacting Chromatin Regions From Multiple Hi-C Datasets.
Curr Protoc Bioinformatics. 2019 Jun;66(1):e76. doi: 10.1002/cpbi.76. Epub 2019 May 24.
4
Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
BMC Bioinformatics. 2020 Nov 7;21(1):506. doi: 10.1186/s12859-020-03832-8.
5
FreeHi-C spike-in simulations for benchmarking differential chromatin interaction detection.
Methods. 2021 May;189:3-11. doi: 10.1016/j.ymeth.2020.07.001. Epub 2020 Jul 12.
6
chromswitch: a flexible method to detect chromatin state switches.
Bioinformatics. 2018 Jul 1;34(13):2286-2288. doi: 10.1093/bioinformatics/bty075.
7
MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments.
PLoS Comput Biol. 2022 Jun 24;18(6):e1010241. doi: 10.1371/journal.pcbi.1010241. eCollection 2022 Jun.
8
hicGAN infers super resolution Hi-C data with generative adversarial networks.
Bioinformatics. 2019 Jul 15;35(14):i99-i107. doi: 10.1093/bioinformatics/btz317.
9
EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i272-i279. doi: 10.1093/bioinformatics/btab272.
10
ZipHiC: a novel Bayesian framework to identify enriched interactions and experimental biases in Hi-C data.
Bioinformatics. 2022 Jul 11;38(14):3523-3531. doi: 10.1093/bioinformatics/btac387.

引用本文的文献

1
Pore-C sequencing identifies episome-driven chromosome conformation perturbations differentiating pneumococcal epigenetic variants.
PLoS Pathog. 2025 Aug 14;21(8):e1013392. doi: 10.1371/journal.ppat.1013392. eCollection 2025 Aug.
2
SMCHD1 maintains heterochromatin, genome compartments and epigenome landscape in human myoblasts.
Nat Commun. 2025 Jul 26;16(1):6900. doi: 10.1038/s41467-025-62211-0.
3
scHiCcompare: An R Package for Differential Analysis of Single-cell Hi-C Data.
J Mol Biol. 2025 Apr 15:169155. doi: 10.1016/j.jmb.2025.169155.
4
Binding domain mutations provide insight into CTCF's relationship with chromatin and its contribution to gene regulation.
Cell Genom. 2025 Apr 9;5(4):100813. doi: 10.1016/j.xgen.2025.100813. Epub 2025 Mar 20.
5
-epigenomic reprogramming and maintenance of plasma cell phenotype in t(4;14) myeloma.
Oncotarget. 2025 Mar 21;16:220-229. doi: 10.18632/oncotarget.28706.
6
Examining the dynamics of three-dimensional genome organization with multitask matrix factorization.
Genome Res. 2025 May 2;35(5):1179-1193. doi: 10.1101/gr.279930.124.
7
A comprehensive review and benchmark of differential analysis tools for Hi-C data.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf074.
9
Chromatin Topological Domains Associate With the Rapid Formation of Tandem Duplicates in Plants.
Adv Sci (Weinh). 2025 Feb;12(7):e2408861. doi: 10.1002/advs.202408861. Epub 2024 Dec 27.
10
Dynamic Changes in Histone Modifications Are Associated with Differential Chromatin Interactions.
Genes (Basel). 2024 Jul 26;15(8):988. doi: 10.3390/genes15080988.

本文引用的文献

1
HiCcompare: an R-package for joint normalization and comparison of HI-C datasets.
BMC Bioinformatics. 2018 Jul 31;19(1):279. doi: 10.1186/s12859-018-2288-x.
2
FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.
Genome Res. 2018 Mar 1;28(3):412-422. doi: 10.1101/gr.212241.116.
3
Multiscale 3D Genome Rewiring during Mouse Neural Development.
Cell. 2017 Oct 19;171(3):557-572.e24. doi: 10.1016/j.cell.2017.09.043.
4
diffloop: a computational framework for identifying and analyzing differential DNA loops from sequencing data.
Bioinformatics. 2018 Feb 15;34(4):672-674. doi: 10.1093/bioinformatics/btx623.
5
Cohesin Loss Eliminates All Loop Domains.
Cell. 2017 Oct 5;171(2):305-320.e24. doi: 10.1016/j.cell.2017.09.026.
6
No counts, no variance: allowing for loss of degrees of freedom when assessing biological variability from RNA-seq data.
Stat Appl Genet Mol Biol. 2017 Apr 25;16(2):83-93. doi: 10.1515/sagmb-2017-0010.
7
8
Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse.
Nucleic Acids Res. 2017 Jan 4;45(D1):D658-D662. doi: 10.1093/nar/gkw983. Epub 2016 Oct 26.
9
Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments.
Cell Syst. 2016 Jul;3(1):95-8. doi: 10.1016/j.cels.2016.07.002.
10
TAD disruption as oncogenic driver.
Curr Opin Genet Dev. 2016 Feb;36:34-40. doi: 10.1016/j.gde.2016.03.008. Epub 2016 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验