Suppr超能文献

hedgehog 蛋白胆固醇水解作用中的甾醇 A 环可塑性支持原始的底物选择性机制。

Sterol A-ring plasticity in hedgehog protein cholesterolysis supports a primitive substrate selectivity mechanism.

机构信息

Chemistry Department, Binghamton University, Binghamton, New York 13902, USA.

出版信息

Chem Commun (Camb). 2019 Feb 5;55(12):1829-1832. doi: 10.1039/c8cc09729a.

Abstract

Cholesterolysis of Hedgehog family proteins couples endoproteolysis to protein C-terminal sterylation. The transformation is self-catalyzed by HhC, a partially characterized enzymatic domain found in precursor forms of Hedgehog. Here we explore spatial ambiguity in sterol recognition by HhC, using a trio of derivatives where the sterol A-ring is contracted, fused, or distorted. Sterylation assays indicate that these geometric variants react as substrates with relative activity: cholesterol, 1.000 > A-ring contracted, 0.100 > A-ring fused, 0.020 > A-ring distorted, 0.005. Experimental results and computational sterol docking into the first HhC homology model suggest a partially unstructured binding site with substrate recognition governed in large part by hydrophobic interactions.

摘要

Hedgehog 家族蛋白的胆固醇分解将内切蛋白酶解与蛋白 C 末端的甾基化偶联起来。这种转化是由 HhC 自催化的,HhC 是一种部分表征的酶结构域,存在于 Hedgehog 的前体形式中。在这里,我们使用一组衍生物探索了 HhC 中甾醇识别的空间模糊性,其中甾醇 A 环收缩、融合或扭曲。甾基化测定表明,这些几何变体作为底物与相对活性反应:胆固醇,1.000 > A 环收缩,0.100 > A 环融合,0.020 > A 环扭曲,0.005。实验结果和计算甾醇对接到第一个 HhC 同源模型表明,存在一个部分无结构的结合位点,底物识别在很大程度上受疏水相互作用的控制。

相似文献

2
Protein-Nucleic Acid Conjugation with Sterol Linkers Using Hedgehog Autoprocessing.
Bioconjug Chem. 2019 Nov 20;30(11):2799-2804. doi: 10.1021/acs.bioconjchem.9b00550. Epub 2019 Oct 10.
3
Nanomolar, Noncovalent Antagonism of Hedgehog Cholesterolysis: Exception to the "Irreversibility Rule" for Protein Autoprocessing Inhibition.
Biochemistry. 2022 Jun 7;61(11):1022-1028. doi: 10.1021/acs.biochem.1c00697. Epub 2021 Dec 23.
4
Chemical Bypass of General Base Catalysis in Hedgehog Protein Cholesterolysis Using a Hyper-Nucleophilic Substrate.
J Am Chem Soc. 2018 Jan 24;140(3):916-918. doi: 10.1021/jacs.7b05161. Epub 2017 Sep 25.
5
The Mechanism of Cholesterol Modification of Hedgehog Ligand.
J Comput Chem. 2020 Mar 5;41(6):520-527. doi: 10.1002/jcc.26097. Epub 2019 Nov 14.
6
Hedgehog proteins create a dynamic cholesterol interface.
PLoS One. 2021 Feb 25;16(2):e0246814. doi: 10.1371/journal.pone.0246814. eCollection 2021.
7
Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor.
Anal Biochem. 2015 Nov 1;488:1-5. doi: 10.1016/j.ab.2015.06.021. Epub 2015 Jun 18.
8
Structural basis of sterol recognition by human hedgehog receptor PTCH1.
Sci Adv. 2019 Sep 18;5(9):eaaw6490. doi: 10.1126/sciadv.aaw6490. eCollection 2019 Sep.
9
Dual roles of the sterol recognition region in Hedgehog protein modification.
Commun Biol. 2020 May 21;3(1):250. doi: 10.1038/s42003-020-0977-2.
10
Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling.
Cell. 2016 Aug 25;166(5):1176-1187.e14. doi: 10.1016/j.cell.2016.08.003. Epub 2016 Aug 18.

引用本文的文献

1
Hedgehog Autoprocessing: From Structural Mechanisms to Drug Discovery.
Front Mol Biosci. 2022 May 20;9:900560. doi: 10.3389/fmolb.2022.900560. eCollection 2022.
2
Enzymatic Beacons for Specific Sensing of Dilute Nucleic Acid.
Chembiochem. 2022 Feb 16;23(4):e202100594. doi: 10.1002/cbic.202100594. Epub 2021 Dec 29.
4
Subverting Hedgehog Protein Autoprocessing by Chemical Induction of Paracatalysis.
Biochemistry. 2020 Feb 18;59(6):736-741. doi: 10.1021/acs.biochem.0c00013. Epub 2020 Feb 4.
5
General Base Swap Preserves Activity and Expands Substrate Tolerance in Hedgehog Autoprocessing.
J Am Chem Soc. 2019 Nov 20;141(46):18380-18384. doi: 10.1021/jacs.9b08914. Epub 2019 Nov 7.
6
Protein-Nucleic Acid Conjugation with Sterol Linkers Using Hedgehog Autoprocessing.
Bioconjug Chem. 2019 Nov 20;30(11):2799-2804. doi: 10.1021/acs.bioconjchem.9b00550. Epub 2019 Oct 10.

本文引用的文献

1
Chemical Bypass of General Base Catalysis in Hedgehog Protein Cholesterolysis Using a Hyper-Nucleophilic Substrate.
J Am Chem Soc. 2018 Jan 24;140(3):916-918. doi: 10.1021/jacs.7b05161. Epub 2017 Sep 25.
2
Design and Evolution of a Macrocyclic Peptide Inhibitor of the Sonic Hedgehog/Patched Interaction.
J Am Chem Soc. 2017 Sep 13;139(36):12559-12568. doi: 10.1021/jacs.7b06087. Epub 2017 Aug 30.
3
Sending and Receiving Hedgehog Signals.
Annu Rev Cell Dev Biol. 2017 Oct 6;33:145-168. doi: 10.1146/annurev-cellbio-100616-060847. Epub 2017 Jul 10.
4
A Single Aspartate Coordinates Two Catalytic Steps in Hedgehog Autoprocessing.
J Am Chem Soc. 2016 Aug 31;138(34):10806-9. doi: 10.1021/jacs.6b06928. Epub 2016 Aug 19.
5
Hedgehog Proteins Consume Steroidal CYP17A1 Antagonists: Potential Therapeutic Significance in Advanced Prostate Cancer.
ChemMedChem. 2016 Sep 20;11(18):1983-6. doi: 10.1002/cmdc.201600238. Epub 2016 Jul 20.
6
Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor.
Anal Biochem. 2015 Nov 1;488:1-5. doi: 10.1016/j.ab.2015.06.021. Epub 2015 Jun 18.
7
Cholesterylation: a tail of hedgehog.
Biochem Soc Trans. 2015 Apr;43(2):262-7. doi: 10.1042/BST20150032.
8
Zinc inhibits Hedgehog autoprocessing: linking zinc deficiency with Hedgehog activation.
J Biol Chem. 2015 May 1;290(18):11591-600. doi: 10.1074/jbc.M114.623264. Epub 2015 Mar 18.
9
Active site targeting of hedgehog precursor protein with phenylarsine oxide.
Chembiochem. 2015 Jan 2;16(1):55-8. doi: 10.1002/cbic.201402421. Epub 2014 Nov 21.
10
Comparative Protein Structure Modeling Using MODELLER.
Curr Protoc Bioinformatics. 2014 Sep 8;47:5.6.1-32. doi: 10.1002/0471250953.bi0506s47.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验