Department of Chemistry and Biochemistry , University of Wisconsin-Milwaukee , Milwaukee , Wisconsin 53211 , United States.
ACS Appl Mater Interfaces. 2019 Feb 20;11(7):7415-7422. doi: 10.1021/acsami.8b21290. Epub 2019 Feb 6.
The bioinspired stimuli-responsive structural coloration offers a wide variety of potential applications, ranging from sensing to camouflage to intelligent textiles. Because of its design simplicity, which does not require multilayers of materials with alternative refractive indices or micro- and nanostructures, thin film interference represents a promising solution toward scalable and affordable manufacturing of high-quality responsive structural coloration systems. However, thin films of polymers with appropriate thickness generally do not exhibit visible structural colors if they are directly deposited on transparent substrates such as glass. In this work, a versatile new strategy that enables transparent stimuli-responsive interference coloration (RIC) in the polymer-metal-substrate system is presented. The key concept is to use an ultrathin metal layer as an optical filter instead of high refractive index substrate or highly reflective substrate. Such an optical filter layer allows tuning of the degree of transparency, the constructive interference reflection light, and complementary destructive interference transmission light via changing the metal layer thickness. Real-time, continuous, colorimetric RIC sensors for humidity, organic vapor, and temperature are demonstrated by using different stimuli-responsive polymers. The transparent RIC film on glass shows strong coupling of constructive interference reflected colors and complementary destructive interference transmitted colors on opposite sides of the film. Such transparent RIC film allows for the proof-of-concept demonstration of a self-reporting, humidity-sensing window.
生物启发的刺激响应结构色提供了广泛的潜在应用,从传感到伪装到智能纺织品。由于其设计简单,不需要具有不同折射率的多层材料或微纳结构,薄膜干涉是一种很有前途的解决方案,可以实现高质量响应结构色系统的可扩展和经济实惠的制造。然而,如果聚合物薄膜直接沉积在透明基底(如玻璃)上,其厚度适当通常不会表现出可见的结构颜色。在这项工作中,提出了一种新的通用策略,可以在聚合物-金属-基底系统中实现透明的刺激响应干涉色(RIC)。关键概念是使用超薄金属层作为光学滤波器,而不是高折射率基底或高反射率基底。这种光学滤波器层可以通过改变金属层厚度来调整透明度、构建性干涉反射光和互补性破坏性干涉透射光的程度。通过使用不同的刺激响应聚合物,演示了用于湿度、有机蒸气和温度的实时、连续比色 RIC 传感器。玻璃上的透明 RIC 薄膜在薄膜的两侧显示出构建性干涉反射颜色和互补性破坏性干涉透射颜色的强烈耦合。这种透明的 RIC 薄膜可以实现自报告湿度传感窗的概念验证演示。