Suppr超能文献

从高强度纯音刺激诱发的耳蜗复合动作电位起源于宽范围的耳蜗区域,该区域向最敏感的耳蜗区域偏移。

Cochlear compound action potentials from high-level tone bursts originate from wide cochlear regions that are offset toward the most sensitive cochlear region.

机构信息

Department of Otolaryngology, Washington University School of Medicine in St. Louis , St. Louis, Missouri.

Eaton-Peabody Laboratories, Massachusetts Eye and Ear, and Department of Otolaryngology, Harvard Medical School , Boston, Massachusetts.

出版信息

J Neurophysiol. 2019 Mar 1;121(3):1018-1033. doi: 10.1152/jn.00677.2018. Epub 2019 Jan 23.

Abstract

Little is known about the spatial origins of auditory nerve (AN) compound action potentials (CAPs) evoked by moderate to intense sounds. We studied the spatial origins of AN CAPs evoked by 2- to 16-kHz tone bursts at several sound levels by slowly injecting kainic acid solution into the cochlear apex of anesthetized guinea pigs. As the solution flowed from apex to base, it sequentially reduced CAP responses from low- to high-frequency cochlear regions. The times at which CAPs were reduced, combined with the cochlear location traversed by the solution at that time, showed the cochlear origin of the removed CAP component. For low-level tone bursts, the CAP origin along the cochlea was centered at the characteristic frequency (CF). As sound level increased, the CAP center shifted basally for low-frequency tone bursts but apically for high-frequency tone bursts. The apical shift was surprising because it is opposite the shift expected from AN tuning curve and basilar membrane motion asymmetries. For almost all high-level tone bursts, CAP spatial origins extended over 2 octaves along the cochlea. Surprisingly, CAPs evoked by high-level low-frequency (including 2 kHz) tone bursts showed little CAP contribution from CF regions ≤ 2 kHz. Our results can be mostly explained by spectral splatter from the tone-burst rise times, excitation in AN tuning-curve "tails," and asynchronous AN responses to high-level energy ≤ 2 kHz. This is the first time CAP origins have been identified by a spatially specific technique. Our results show the need for revising the interpretation of the cochlear origins of high-level CAPs-ABR wave 1. NEW & NOTEWORTHY Cochlear compound action potentials (CAPs) and auditory brain stem responses (ABRs) are routinely used in laboratories and clinics. They are typically interpreted as arising from the cochlear region tuned to the stimulus frequency. However, as sound level is increased, the cochlear origins of CAPs from tone bursts of all frequencies become very wide and their centers shift toward the most sensitive cochlear region. The standard interpretation of CAPs and ABRs from moderate to intense stimuli needs revision.

摘要

对于由中高强度声音诱发的听神经(AN)复合动作电位(CAP)的空间起源知之甚少。我们通过向麻醉豚鼠耳蜗顶部缓慢注入海人酸溶液,研究了 2 至 16 kHz 短音爆发诱发的 AN CAP 的空间起源,在几个声级。随着溶液从顶点向底部流动,它依次降低了来自低频到高频耳蜗区域的 CAP 反应。CAP 被降低的时间,结合溶液当时穿过的耳蜗位置,显示了去除 CAP 成分的耳蜗起源。对于低强度的短音爆发,CAP 起源沿耳蜗中心位于特征频率(CF)处。随着声级的增加,低频短音爆发的 CAP 中心向基底移动,而高频短音爆发的 CAP 中心向顶点移动。这种顶点移动令人惊讶,因为它与从 AN 调谐曲线和基底膜运动不对称性预期的移动相反。对于几乎所有高强度的短音爆发,CAP 空间起源在耳蜗上沿超过 2 个倍频程延伸。令人惊讶的是,高强度低频(包括 2 kHz)短音爆发诱发的 CAP 仅显示出来自 CF 区域≤2 kHz 的 CAP 贡献很小。我们的结果可以通过短音爆发上升时间的光谱散射、AN 调谐曲线“尾部”的激发以及高强度能量≤2 kHz 的异步 AN 反应来解释。这是首次通过空间特异性技术确定 CAP 起源。我们的结果表明需要修改对高强度 CAP-ABR 波 1 的耳蜗起源的解释。新的和值得注意的耳蜗复合动作电位(CAP)和听觉脑干反应(ABR)在实验室和临床中经常使用。它们通常被解释为源自刺激频率调谐的耳蜗区域。然而,随着声级的增加,所有频率的短音爆发诱发的 CAP 的耳蜗起源变得非常广泛,它们的中心向最敏感的耳蜗区域移动。需要修改对中等至高强度刺激的 CAP 和 ABR 的标准解释。

相似文献

3
4
Acoustically Evoked Compound Action Potentials Recorded From Cochlear Implant Users With Preserved Acoustic Hearing.
Ear Hear. 2023;44(5):1061-1077. doi: 10.1097/AUD.0000000000001350. Epub 2023 Aug 17.
6
The Spatial Origins of Cochlear Amplification Assessed by Stimulus-Frequency Otoacoustic Emissions.
Biophys J. 2020 Mar 10;118(5):1183-1195. doi: 10.1016/j.bpj.2019.12.031. Epub 2020 Jan 3.
7
Mechanical tuning and amplification within the apex of the guinea pig cochlea.
J Physiol. 2017 Jul 1;595(13):4549-4561. doi: 10.1113/JP273881. Epub 2017 May 21.
8
The auditory nerve overlapped waveform (ANOW) originates in the cochlear apex.
J Assoc Res Otolaryngol. 2014 Jun;15(3):395-411. doi: 10.1007/s10162-014-0447-y. Epub 2014 Feb 11.
9
The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
J Physiol. 1980 Sep;306:79-125. doi: 10.1113/jphysiol.1980.sp013387.
10
The Origin Along the Cochlea of Otoacoustic Emissions Evoked by Mid-Frequency Tone Pips.
J Assoc Res Otolaryngol. 2024 Aug;25(4):363-376. doi: 10.1007/s10162-024-00955-0. Epub 2024 Jun 27.

引用本文的文献

1
Evidence for the Auditory Nerve Generating Envelope Following Responses When Measured from Eardrum Electrodes.
J Assoc Res Otolaryngol. 2025 Apr;26(2):147-162. doi: 10.1007/s10162-025-00979-0. Epub 2025 Mar 6.
2
The Origin Along the Cochlea of Otoacoustic Emissions Evoked by Mid-Frequency Tone Pips.
J Assoc Res Otolaryngol. 2024 Aug;25(4):363-376. doi: 10.1007/s10162-024-00955-0. Epub 2024 Jun 27.
4
5
Histological Correlates of Auditory Nerve Injury from Kainic Acid in the Budgerigar (Melopsittacus undulatus).
J Assoc Res Otolaryngol. 2023 Oct;24(5):473-485. doi: 10.1007/s10162-023-00910-5. Epub 2023 Oct 5.
6
The role of tone duration in dichotic temporal order judgment II: Extending the boundaries of duration and age.
PLoS One. 2022 Mar 30;17(3):e0264831. doi: 10.1371/journal.pone.0264831. eCollection 2022.
9
Is cochlear synapse loss an origin of low-frequency hearing loss associated with endolymphatic hydrops?
Hear Res. 2020 Dec;398:108099. doi: 10.1016/j.heares.2020.108099. Epub 2020 Oct 21.
10
Effects of age on electrophysiological measures of cochlear synaptopathy in humans.
Hear Res. 2020 Oct;396:108068. doi: 10.1016/j.heares.2020.108068. Epub 2020 Sep 8.

本文引用的文献

2
Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea.
Nat Commun. 2018 Aug 3;9(1):3054. doi: 10.1038/s41467-018-05483-z.
3
Editorial: New Advances in Electrocochleography for Clinical and Basic Investigation.
Front Neurosci. 2018 May 8;12:310. doi: 10.3389/fnins.2018.00310. eCollection 2018.
4
Functions of CaBP1 and CaBP2 in the peripheral auditory system.
Hear Res. 2018 Jul;364:48-58. doi: 10.1016/j.heares.2018.04.001. Epub 2018 Apr 9.
6
Perilymph pharmacokinetics of marker applied through a cochlear implant in guinea pigs.
PLoS One. 2017 Aug 17;12(8):e0183374. doi: 10.1371/journal.pone.0183374. eCollection 2017.
8
Noise-induced and age-related hearing loss:  new perspectives and potential therapies.
F1000Res. 2017 Jun 16;6:927. doi: 10.12688/f1000research.11310.1. eCollection 2017.
10
Mechanical tuning and amplification within the apex of the guinea pig cochlea.
J Physiol. 2017 Jul 1;595(13):4549-4561. doi: 10.1113/JP273881. Epub 2017 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验