Suppr超能文献

背散射材料厚度对放射生物学研究中千伏辐照器深度剂量的影响。

Impact of backscatter material thickness on the depth dose of orthovoltage irradiators for radiobiology research.

机构信息

Department of Radiation Medicine, The University of Kentucky, Lexington, KY 40536, United States of America. Author to whom any correspondence should be addressed. Radiation Medicine, University of Kentucky, Markey Cancer Center, Rm CC063, 800 Rose St., Lexington, KY 40536-0293, United States of America.

出版信息

Phys Med Biol. 2019 Feb 20;64(5):055001. doi: 10.1088/1361-6560/ab0120.

Abstract

The orthovoltage x-ray energy frequently used in radiation research is prone to dosimetry errors due to insufficient backscatter conditions. In many radiobiology studies, especially for cell irradiations, precise dose calculation algorithms such as Convolution-Superposition or Monte Carlo are impractical and as such, less accurate hand calculation methods are used for dose estimation. These dose estimation methods typically assume full backscatter conditions. The purpose of this study is to demonstrate the magnitude of the dose error that results from insufficient backscatter, and to provide lookup tables to account this issue. The beam spectra of several widely used commercial systems (XRAD-225, XRAD-320, SARRP) were used in Monte Carlo (MC) simulations on a series of phantom setups to investigate the impact of varying backscatter conditions on dosimetry. The depth dose curves for different field sizes, water phantom thicknesses and beam qualities were generated. In addition, depth dependent backscatter factors for different field sizes and different beam qualities were calculated. It is demonstrated that as much as a 50% dose difference exists for different backscatter conditions at the beam qualities studied. The choice of cell dish size as well as other changes in the experiment setup can have more than 10% impact on the dose. The impact of backscatter is reduced with a decrease in field size. Further, the thickness needed to provide full backscatter can be approximated as being equal to the field size. It is imperative to ensure full backscatter conditions during system and dosimeter calibration, or to use the look-up table provided in this study.

摘要

在辐射研究中经常使用的正交 X 射线能量由于反向散射条件不足容易导致剂量测量误差。在许多放射生物学研究中,特别是对于细胞照射,精确的剂量计算算法(如卷积叠加或蒙特卡罗)不切实际,因此,使用不太准确的手动计算方法进行剂量估计。这些剂量估计方法通常假设完全反向散射条件。本研究旨在展示由于反向散射不足而导致的剂量误差的大小,并提供查找表来解决这个问题。使用几种广泛使用的商业系统(XRAD-225、XRAD-320、SARRP)的束谱在一系列模型设置上进行了蒙特卡罗(MC)模拟,以研究不同反向散射条件对剂量测量的影响。生成了不同射野大小、水模体厚度和束质的深度剂量曲线。此外,还计算了不同射野大小和不同束质的深度相关反向散射因子。结果表明,在研究的束质下,不同反向散射条件下的剂量差异高达 50%。细胞培养皿大小的选择以及实验设置的其他变化对剂量的影响可能超过 10%。随着射野尺寸的减小,反向散射的影响减小。此外,提供完全反向散射所需的厚度可以近似等于射野尺寸。在系统和剂量计校准期间,务必确保完全反向散射条件,或者使用本研究中提供的查找表。

相似文献

3
Backscatter correction factor for megavoltage photon beam.
Med Phys. 2011 Oct;38(10):5563-8. doi: 10.1118/1.3633903.
4
Influence of phantom thickness and material on the backscatter factors for diagnostic x-ray beam dosimetry.
Phys Med Biol. 2013 Jan 21;58(2):247-60. doi: 10.1088/0031-9155/58/2/247. Epub 2012 Dec 21.
5
Effect of the bone heterogeneity on the dose prescription in orthovoltage radiotherapy: A Monte Carlo study.
Rep Pract Oncol Radiother. 2011 Nov 15;17(1):38-43. doi: 10.1016/j.rpor.2011.09.001. eCollection 2011.
7
Dose calculations for preclinical radiobiology experiments conducted with single-field cabinet irradiators.
Med Phys. 2022 Mar;49(3):1911-1923. doi: 10.1002/mp.15487. Epub 2022 Feb 9.
10
Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
Phys Med Biol. 2012 Jun 21;57(12):3885-99. doi: 10.1088/0031-9155/57/12/3885. Epub 2012 May 30.

引用本文的文献

1
Commissioning of a precision preclinical 200 kV x-ray irradiator based on modular adaptations.
Med Phys. 2025 Jun;52(6):4713-4722. doi: 10.1002/mp.17758. Epub 2025 Mar 26.
3
4
Inhibition of ribonucleotide reductase subunit M2 enhances the radiosensitivity of metastatic pancreatic neuroendocrine tumor.
Cancer Lett. 2024 Aug 1;596:216993. doi: 10.1016/j.canlet.2024.216993. Epub 2024 May 25.
6
Dosimetric validation of SmART-RAD Monte Carlo modelling for x-ray cabinet radiobiology irradiators.
Phys Med Biol. 2024 Apr 19;69(9):095014. doi: 10.1088/1361-6560/ad3720.
7
Magnetic Resonance Imaging of Macrophage Response to Radiation Therapy.
Cancers (Basel). 2023 Dec 17;15(24):5874. doi: 10.3390/cancers15245874.

本文引用的文献

1
Evaluating TOPAS for the calculation of backscatter factors for low energy x-ray beams.
Phys Med Biol. 2018 Oct 2;63(19):195014. doi: 10.1088/1361-6560/aadf28.
3
Radiation Biology Irradiator Dose Verification Survey.
Radiat Res. 2016 Feb;185(2):163-8. doi: 10.1667/RR14155.1. Epub 2016 Jan 15.
4
The Importance of Dosimetry Standardization in Radiobiology.
J Res Natl Inst Stand Technol. 2013 Dec 30;118:403-18. doi: 10.6028/jres.118.021. eCollection 2013.
5
Characterization of an orthovoltage biological irradiator used for radiobiological research.
J Radiat Res. 2015 May;56(3):485-92. doi: 10.1093/jrr/rru129. Epub 2015 Feb 17.
6
Modality comparison for small animal radiotherapy: a simulation study.
Med Phys. 2014 Jan;41(1):011710. doi: 10.1118/1.4842415.
9
Development and validation of a treatment planning system for small animal radiotherapy: SmART-Plan.
Radiother Oncol. 2013 Dec;109(3):361-6. doi: 10.1016/j.radonc.2013.10.003. Epub 2013 Oct 31.
10
Influence of phantom thickness and material on the backscatter factors for diagnostic x-ray beam dosimetry.
Phys Med Biol. 2013 Jan 21;58(2):247-60. doi: 10.1088/0031-9155/58/2/247. Epub 2012 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验