Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, United States of America.
Phys Med Biol. 2019 Mar 7;64(5):055014. doi: 10.1088/1361-6560/ab0137.
Shear wave elastography (SWE) techniques have received substantial attention in recent years. Strong experimental data in SWE suggest that shear wave speed changes significantly due to the known acoustoelastic effect (AE). This presents both challenges and opportunities toward in vivo characterization of biological soft tissues. In this work, under the framework of continuum mechanics, we model a tissue-mimicking material as a homogeneous, isotropic, incompressible, hyperelastic material. Our primary objective is to quantitatively and qualitatively compare experimentally measured acoustoelastic data with model-predicted outcomes using multiple strain energy functions. Our analysis indicated that the classic Neo-Hookean and Mooney-Rivlin models are inadequate for modeling the AE in tissue-mimicking materials. However, a subclass of strain energy functions containing both high-order/exponential term(s) and second-order invariant dependence showed good agreement with experimental data. Based on data investigated, we also found that discrepancies may exist between parameters inversely estimated from uniaxial compression and SWE data. Overall, our findings may improve our understanding of clinical SWE results.
剪切波弹性成像(SWE)技术近年来受到了广泛关注。SWE 方面的有力实验数据表明,由于众所周知的声弹性效应(AE),剪切波速度会发生显著变化。这为生物软组织的体内特性描述既带来了挑战,也带来了机遇。在本工作中,我们在连续介质力学的框架下,将组织模拟材料建模为均匀、各向同性、不可压缩、超弹性材料。我们的主要目标是使用多种应变能函数,对实验测量的声弹性数据与模型预测结果进行定量和定性比较。分析表明,经典的 Neo-Hookean 和 Mooney-Rivlin 模型不适用于组织模拟材料的 AE 建模。然而,包含高阶/指数项和二阶不变量依赖项的应变能函数子类与实验数据吻合较好。基于所研究的数据,我们还发现,从单轴压缩和 SWE 数据反演得到的参数之间可能存在差异。总的来说,我们的研究结果可能会增进对临床 SWE 结果的理解。