Suppr超能文献

通用高亲和力铁转运荧光传感器,应用于 ESKAPE 病原体。

Universal fluorescent sensors of high-affinity iron transport, applied to ESKAPE pathogens.

机构信息

From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506 and.

the Department of Biological Sciences, Bethel University, St. Paul, Minnesota 55112.

出版信息

J Biol Chem. 2019 Mar 22;294(12):4682-4692. doi: 10.1074/jbc.RA118.006921. Epub 2019 Jan 24.

Abstract

Sensitive assays of biochemical specificity, affinity, and capacity are valuable both for basic research and drug discovery. We created fluorescent sensors that monitor high-affinity binding reactions and used them to study iron acquisition by ESKAPE bacteria, which are frequently responsible for antibiotic-resistant infections. By introducing site-directed Cys residues in bacterial iron transporters and modifying them with maleimide fluorophores, we generated living cells or purified proteins that bind but do not transport target compounds. These constructs sensitively detected ligand concentrations in solution, enabling accurate, real-time spectroscopic analysis of membrane transport by other cells. We assessed the efficacy of these "fluorescent decoy" (FD) sensors by characterizing active iron transport in the ESKAPE bacteria. The FD sensors monitored uptake of both ferric siderophores and hemin by the pathogens. An FD sensor for a particular ligand was universally effective in observing the uptake of that compound by all organisms we tested. We adapted the FD sensors to microtiter format, where they allow high-throughput screens for chemicals that block iron uptake, without genetic manipulations of the virulent target organisms. Hence, screening assays with FD sensors facilitate studies of mechanistic biochemistry, as well as discovery of chemicals that inhibit prokaryotic membrane transport. With appropriate design, FD sensors are potentially applicable to any pro- or eukaryotic high-affinity ligand transport process.

摘要

生化特异性、亲和力和容量的灵敏检测对于基础研究和药物发现都很有价值。我们创建了荧光传感器来监测高亲和力结合反应,并利用它们研究 ESKAPE 细菌的铁获取,这些细菌经常导致对抗生素耐药的感染。通过在细菌铁转运蛋白中引入定点 Cys 残基并用马来酰亚胺荧光团修饰它们,我们生成了活细胞或纯化蛋白,这些蛋白可以结合但不转运目标化合物。这些构建体可以在溶液中灵敏地检测配体浓度,从而能够对其他细胞的膜转运进行准确、实时的光谱分析。我们通过表征 ESKAPE 细菌中的活性铁转运来评估这些“荧光诱饵”(FD)传感器的功效。FD 传感器监测病原体中铁载体和血红素的摄取。针对特定配体的 FD 传感器普遍有效地观察到我们测试的所有生物体对该化合物的摄取。我们将 FD 传感器适应于微量滴定板格式,其中它们允许高通量筛选可阻断铁摄取的化学物质,而无需对毒力靶生物体进行遗传操作。因此,FD 传感器筛选测定法促进了对机制生物化学的研究,以及发现抑制原核膜转运的化学物质。通过适当的设计,FD 传感器可能适用于任何原核或真核的高亲和力配体转运过程。

相似文献

1
Universal fluorescent sensors of high-affinity iron transport, applied to ESKAPE pathogens.
J Biol Chem. 2019 Mar 22;294(12):4682-4692. doi: 10.1074/jbc.RA118.006921. Epub 2019 Jan 24.
2
Fluorescence High-Throughput Screening for Inhibitors of TonB Action.
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00889-16. Print 2017 May 15.
3
High-Throughput Screening Assay for Inhibitors of TonB-Dependent Iron Transport.
J Biomol Screen. 2016 Mar;21(3):316-22. doi: 10.1177/1087057115613788. Epub 2015 Oct 30.
4
TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA.
J Bacteriol. 2017 Feb 28;199(6). doi: 10.1128/JB.00723-16. Print 2017 Mar 15.
5
Iron transport-mediated drug delivery using mixed-ligand siderophore-beta-lactam conjugates.
Chem Biol. 1996 Dec;3(12):1011-9. doi: 10.1016/s1074-5521(96)90167-2.
6
Recent insights into iron import by bacteria.
Curr Opin Chem Biol. 2011 Apr;15(2):328-34. doi: 10.1016/j.cbpa.2011.01.005. Epub 2011 Feb 1.
7
Iron uptake mechanisms as key virulence factors in bacterial fish pathogens.
J Appl Microbiol. 2020 Jul;129(1):104-115. doi: 10.1111/jam.14595. Epub 2020 Feb 12.
8
A dual component heme biosensor that integrates heme transport and synthesis in bacteria.
J Microbiol Methods. 2015 Nov;118:7-17. doi: 10.1016/j.mimet.2015.07.011. Epub 2015 Aug 4.
9
Bacterial iron sources: from siderophores to hemophores.
Annu Rev Microbiol. 2004;58:611-47. doi: 10.1146/annurev.micro.58.030603.123811.
10
Iron metabolism and infection.
Food Nutr Bull. 2007 Dec;28(4 Suppl):S515-23. doi: 10.1177/15648265070284S405.

引用本文的文献

1
Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu.
Front Microbiol. 2024 Mar 27;15:1355253. doi: 10.3389/fmicb.2024.1355253. eCollection 2024.
2
Siderophore-mediated iron acquisition by .
J Bacteriol. 2024 May 23;206(5):e0002424. doi: 10.1128/jb.00024-24. Epub 2024 Apr 9.
4
Pseudomonas aeruginosa FpvB Is a High-Affinity Transporter for Xenosiderophores Ferrichrome and Ferrioxamine B.
mBio. 2023 Feb 28;14(1):e0314922. doi: 10.1128/mbio.03149-22. Epub 2022 Dec 12.
5
Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics.
Chem Rev. 2021 May 12;121(9):5193-5239. doi: 10.1021/acs.chemrev.0c01005. Epub 2021 Mar 16.
6
Conformational rearrangements in the N-domain of FepA during ferric enterobactin transport.
J Biol Chem. 2020 Apr 10;295(15):4974-4984. doi: 10.1074/jbc.RA119.011850. Epub 2020 Feb 25.
7
Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections.
Adv Sci (Weinh). 2019 Dec 5;7(1):1901872. doi: 10.1002/advs.201901872. eCollection 2020 Jan.

本文引用的文献

1
Biogenesis and functions of mammalian iron-sulfur proteins in the regulation of iron homeostasis and pivotal metabolic pathways.
J Biol Chem. 2017 Aug 4;292(31):12744-12753. doi: 10.1074/jbc.R117.789537. Epub 2017 Jun 14.
2
Fluorescence High-Throughput Screening for Inhibitors of TonB Action.
J Bacteriol. 2017 Apr 25;199(10). doi: 10.1128/JB.00889-16. Print 2017 May 15.
3
β-Lactam Resistance Mechanisms: Gram-Positive Bacteria and Mycobacterium tuberculosis.
Cold Spring Harb Perspect Med. 2016 May 2;6(5):a025221. doi: 10.1101/cshperspect.a025221.
4
Breaking the Spell: Combating Multidrug Resistant 'Superbugs'.
Front Microbiol. 2016 Feb 18;7:174. doi: 10.3389/fmicb.2016.00174. eCollection 2016.
5
ROSET Model of TonB Action in Gram-Negative Bacterial Iron Acquisition.
J Bacteriol. 2016 Jan 19;198(7):1013-21. doi: 10.1128/JB.00823-15.
6
High-Throughput Screening Assay for Inhibitors of TonB-Dependent Iron Transport.
J Biomol Screen. 2016 Mar;21(3):316-22. doi: 10.1177/1087057115613788. Epub 2015 Oct 30.
7
Novel mechanism of hemin capture by Hbp2, the hemoglobin-binding hemophore from Listeria monocytogenes.
J Biol Chem. 2014 Dec 12;289(50):34886-99. doi: 10.1074/jbc.M114.583013. Epub 2014 Oct 14.
8
Concerted loop motion triggers induced fit of FepA to ferric enterobactin.
J Gen Physiol. 2014 Jul;144(1):71-80. doi: 10.1085/jgp.201311159.
10
The ferric enterobactin transporter Fep is required for persistent Salmonella enterica serovar typhimurium infection.
Infect Immun. 2013 Nov;81(11):4063-70. doi: 10.1128/IAI.00412-13. Epub 2013 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验