Suppr超能文献

基于 Au/PPy-rGO 纳米复合材料作为基底的无酶灵敏电化学生物传感器用于检测 microRNA-16,该传感器应用了一种多重信号放大策略。

An enzyme-free sensitive electrochemical microRNA-16 biosensor by applying a multiple signal amplification strategy based on Au/PPy-rGO nanocomposite as a substrate.

机构信息

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.

Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.

出版信息

Talanta. 2019 May 1;196:329-336. doi: 10.1016/j.talanta.2018.12.082. Epub 2018 Dec 26.

Abstract

In present study, a sensitive and effective electrochemical microRNA (miRNA) sensing platform is successfully developed by integrating gold nanoparticles/polypyrrole-reduced graphene oxide (Au/PPy-rGO), catalyzed hairpin assembly (CHA) and hybridization chain reaction (HCR) multiple signal amplification strategy. Firstly, Au/PPy-rGO was employed onto a bare GCE by electrodeposition that can greatly enhanced conductivity and effectively immobilize probes. Then, the thiolated capture probes (SH-CP) were self-assembled on the Au/PPy-rGO modified GCE via Au-S bond. The target miRNA triggered the dynamic assembly of the two hairpin substrates (H1 and H2), leading to the cyclicality of the target miRNA and the formation of H1-H2 complexes without the assistance of enzyme. Subsequently, the newly emerging DNA fragment of H2 triggered the HCR when a mixture solution (hairpins H3 and H4) and produced dsDNA polymers. Finally, a substantial amount of methylene blue (MB) as signal indicator was intercalated into the minor groove of the long dsDNA polymers to achieve detected electrochemical signal. The fabricated sensor is able to detect miRNA-16 (model target) with concentration range from 10 fM to 5 nM with a low detection limit (LOD) of 1.57 fM (S/N = 3). Current research suggests that the developed multiple signal amplification platform has a great potential for the applications in the field of biomedical research and clinical analysis.

摘要

在本研究中,通过整合金纳米粒子/聚吡咯还原氧化石墨烯(Au/PPy-rGO)、催化发夹组装(CHA)和杂交链式反应(HCR)多重信号放大策略,成功开发了一种灵敏有效的电化学 microRNA(miRNA)传感平台。首先,通过电沉积将 Au/PPy-rGO 集成到裸 GCE 上,这大大增强了导电性并有效地固定了探针。然后,巯基化捕获探针(SH-CP)通过 Au-S 键自组装在 Au/PPy-rGO 修饰的 GCE 上。目标 miRNA 触发两个发夹底物(H1 和 H2)的动态组装,导致目标 miRNA 的循环和 H1-H2 复合物的形成,而无需酶的辅助。随后,新出现的 H2 DNA 片段触发 HCR,当混合溶液(发夹 H3 和 H4)和产生 dsDNA 聚合物时。最后,大量的亚甲基蓝(MB)作为信号指示剂被插入长 dsDNA 聚合物的小沟中,以实现检测到的电化学信号。所构建的传感器能够以 10 fM 至 5 nM 的浓度范围检测 miRNA-16(模型靶标),检测限(LOD)低至 1.57 fM(S/N=3)。目前的研究表明,所开发的多重信号放大平台在生物医学研究和临床分析领域具有很大的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验