Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain.
Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY 10010, USA.
J Mech Behav Biomed Mater. 2019 Apr;92:144-151. doi: 10.1016/j.jmbbm.2019.01.009. Epub 2019 Jan 12.
An investigation is made of wear mechanisms in a suite of dental materials with a ceramic component and tooth enamel using a laboratory test that simulates clinically observable wear facets. A ball-on-3-specimen wear tester in a tetrahedral configuration with a rotating hard antagonist zirconia sphere is used to produce circular wear scars on polished surfaces of dental materials in artificial saliva. Images of the wear scars enable interpretation of wear mechanisms, and measurements of scar dimensions quantify wear rates. Rates are lowest for zirconia ceramics, highest for lithium disilicate, with feldspathic ceramic and ceramic-polymer composite intermediate. Examination of wear scars reveals surface debris, indicative of a mechanism of material removal at the microstructural level. Microplasticity and microcracking models account for mild and severe wear regions. Wear models are used to evaluate potential longevity for each dental material. It is demonstrated that controlled laboratory testing can identify and quantify wear susceptibility under conditions that reflect the essence of basic occlusal contact. In addition to causing severe material loss, wear damage can lead to premature tooth or prosthetic failure.
采用实验室试验研究了一套具有陶瓷部件和牙釉质的牙科材料的磨损机制,该试验模拟了临床上可观察到的磨损面。采用四面体配置的带有旋转硬对抗体氧化锆球的球对 3 个试样磨损试验机,在人工唾液中对牙科材料的抛光表面产生圆形磨损痕迹。磨损痕迹的图像可用于解释磨损机制,而疤痕尺寸的测量可量化磨损率。氧化锆陶瓷的磨损率最低,锂硅二酸盐的磨损率最高,长石陶瓷和陶瓷-聚合物复合材料的磨损率居中。对磨损痕迹的检查显示出表面碎屑,表明在微观结构水平上存在材料去除的机制。微塑性和微裂纹模型解释了轻度和重度磨损区域。磨损模型用于评估每种牙科材料的潜在耐用性。结果表明,在反映基本咬合接触本质的条件下,通过受控的实验室测试可以识别和量化磨损敏感性。除了造成严重的材料损失外,磨损损坏还可能导致牙齿或修复体过早失效。