Suppr超能文献

陶瓷基牙科材料的磨损。

Wear of ceramic-based dental materials.

机构信息

Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain.

Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY 10010, USA.

出版信息

J Mech Behav Biomed Mater. 2019 Apr;92:144-151. doi: 10.1016/j.jmbbm.2019.01.009. Epub 2019 Jan 12.

Abstract

An investigation is made of wear mechanisms in a suite of dental materials with a ceramic component and tooth enamel using a laboratory test that simulates clinically observable wear facets. A ball-on-3-specimen wear tester in a tetrahedral configuration with a rotating hard antagonist zirconia sphere is used to produce circular wear scars on polished surfaces of dental materials in artificial saliva. Images of the wear scars enable interpretation of wear mechanisms, and measurements of scar dimensions quantify wear rates. Rates are lowest for zirconia ceramics, highest for lithium disilicate, with feldspathic ceramic and ceramic-polymer composite intermediate. Examination of wear scars reveals surface debris, indicative of a mechanism of material removal at the microstructural level. Microplasticity and microcracking models account for mild and severe wear regions. Wear models are used to evaluate potential longevity for each dental material. It is demonstrated that controlled laboratory testing can identify and quantify wear susceptibility under conditions that reflect the essence of basic occlusal contact. In addition to causing severe material loss, wear damage can lead to premature tooth or prosthetic failure.

摘要

采用实验室试验研究了一套具有陶瓷部件和牙釉质的牙科材料的磨损机制,该试验模拟了临床上可观察到的磨损面。采用四面体配置的带有旋转硬对抗体氧化锆球的球对 3 个试样磨损试验机,在人工唾液中对牙科材料的抛光表面产生圆形磨损痕迹。磨损痕迹的图像可用于解释磨损机制,而疤痕尺寸的测量可量化磨损率。氧化锆陶瓷的磨损率最低,锂硅二酸盐的磨损率最高,长石陶瓷和陶瓷-聚合物复合材料的磨损率居中。对磨损痕迹的检查显示出表面碎屑,表明在微观结构水平上存在材料去除的机制。微塑性和微裂纹模型解释了轻度和重度磨损区域。磨损模型用于评估每种牙科材料的潜在耐用性。结果表明,在反映基本咬合接触本质的条件下,通过受控的实验室测试可以识别和量化磨损敏感性。除了造成严重的材料损失外,磨损损坏还可能导致牙齿或修复体过早失效。

相似文献

1
Wear of ceramic-based dental materials.
J Mech Behav Biomed Mater. 2019 Apr;92:144-151. doi: 10.1016/j.jmbbm.2019.01.009. Epub 2019 Jan 12.
2
Wear behavior of human enamel against lithium disilicate glass ceramic and type III gold.
J Prosthet Dent. 2014 Dec;112(6):1399-405. doi: 10.1016/j.prosdent.2014.08.002. Epub 2014 Oct 11.
3
Comparative study of the wear of the pair human teeth/Vita Enamic® vs commonly used dental ceramics through chewing simulation.
J Mech Behav Biomed Mater. 2018 Dec;88:251-260. doi: 10.1016/j.jmbbm.2018.08.029. Epub 2018 Aug 20.
4
Three-body wear potential of dental yttrium-stabilized zirconia ceramic after grinding, polishing, and glazing treatments.
J Prosthet Dent. 2014 Nov;112(5):1151-5. doi: 10.1016/j.prosdent.2013.12.021. Epub 2014 May 16.
5
Inverse correlations between wear and mechanical properties in biphasic dental materials with ceramic constituents.
J Mech Behav Biomed Mater. 2020 May;105:103722. doi: 10.1016/j.jmbbm.2020.103722. Epub 2020 Mar 12.
6
Wear of monolithic zirconia against different CAD-CAM and indirect restorative materials.
J Prosthet Dent. 2022 Sep;128(3):505-511. doi: 10.1016/j.prosdent.2021.03.023. Epub 2021 May 28.
7
Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.
J Prosthet Dent. 2014 Nov;112(5):1141-50. doi: 10.1016/j.prosdent.2014.05.006. Epub 2014 Jun 28.
8
Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing.
J Dent. 2014 Dec;42(12):1586-91. doi: 10.1016/j.jdent.2014.09.008. Epub 2014 Sep 23.
9
Wear Characteristics and Volume Loss of CAD/CAM Ceramic Materials.
J Prosthodont. 2019 Feb;28(2):e510-e518. doi: 10.1111/jopr.12782. Epub 2018 Mar 6.

引用本文的文献

1
Investigation of the wear resistance of different artificial teeth materials in removable dentures.
Bioinformation. 2024 Sep 30;20(9):1159-1163. doi: 10.6026/9732063002001159. eCollection 2024.
3
Tribological aspects of enamel wear caused by zirconia and lithium disilicate: A meta-narrative review.
Jpn Dent Sci Rev. 2024 Dec;60:258-270. doi: 10.1016/j.jdsr.2024.11.001. Epub 2024 Nov 30.
6
Recent Advances in Biomimetics for the Development of Bio-Inspired Prosthetic Limbs.
Biomimetics (Basel). 2024 Apr 30;9(5):273. doi: 10.3390/biomimetics9050273.
9
Threshold damage mechanisms in brittle solids and their impact on advanced technologies.
Acta Mater. 2022 Jun 15;232. doi: 10.1016/j.actamat.2022.117921. Epub 2022 Apr 10.

本文引用的文献

1
Comparative study of the wear of the pair human teeth/Vita Enamic® vs commonly used dental ceramics through chewing simulation.
J Mech Behav Biomed Mater. 2018 Dec;88:251-260. doi: 10.1016/j.jmbbm.2018.08.029. Epub 2018 Aug 20.
2
Evaluating dental zirconia.
Dent Mater. 2019 Jan;35(1):15-23. doi: 10.1016/j.dental.2018.08.291. Epub 2018 Aug 29.
3
Polishing effects and wear performance of chairside CAD/CAM materials.
Clin Oral Investig. 2019 Feb;23(2):725-737. doi: 10.1007/s00784-018-2473-3. Epub 2018 May 16.
4
Role of particulate concentration in tooth wear.
J Mech Behav Biomed Mater. 2018 Apr;80:77-80. doi: 10.1016/j.jmbbm.2018.01.024.
5
Novel Zirconia Materials in Dentistry.
J Dent Res. 2018 Feb;97(2):140-147. doi: 10.1177/0022034517737483. Epub 2017 Oct 16.
6
ADM guidance-Ceramics: guidance to the use of fractography in failure analysis of brittle materials.
Dent Mater. 2017 Jun;33(6):599-620. doi: 10.1016/j.dental.2017.03.004. Epub 2017 Apr 8.
7
Clinical assessment of enamel wear caused by monolithic zirconia crowns.
J Oral Rehabil. 2016 Aug;43(8):621-9. doi: 10.1111/joor.12409. Epub 2016 May 20.
9
A fractographic study of clinically retrieved zirconia-ceramic and metal-ceramic fixed dental prostheses.
Dent Mater. 2015 Oct;31(10):1198-206. doi: 10.1016/j.dental.2015.07.003. Epub 2015 Jul 29.
10
Mechanics analysis of molar tooth splitting.
Acta Biomater. 2015 Mar;15:237-43. doi: 10.1016/j.actbio.2015.01.004. Epub 2015 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验