Suppr超能文献

哪种活动记录仪变量能最佳地描述双相情感障碍患者的睡眠-觉醒周期?

Which actigraphic variables optimally characterize the sleep-wake cycle of individuals with bipolar disorders?

机构信息

Department of Mental Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.

Department of Psychiatry, St. Olav's University Hospital, Trondheim, Norway.

出版信息

Acta Psychiatr Scand. 2019 Mar;139(3):269-279. doi: 10.1111/acps.13003.

Abstract

OBJECTIVE

To examine which combination of objectively measured actigraphy parameters best characterizes the sleep-wake cycle of euthymic individuals with bipolar disorder (BD) compared with healthy controls (HC).

METHODS

Sixty-one BD cases and 61 matched HC undertook 21 consecutive days of actigraphy. Groups were compared using discriminant function analyses (DFA) that explored dimensions derived from mean values of sleep parameters (Model 1); variability of sleep parameters (2); daytime activity (3); and combined sleep and activity parameters (4). Exploratory within-group analyses examined characteristics associated with misclassification.

RESULTS

After controlling for depressive symptoms, the combined model (4) correctly classified 75% cases, while the sleep models (1 and 2) correctly classified 87% controls. The area under the curve favored the combined model (0.86). Age was significantly associated with misclassification among HC, while a diagnosis of BD-II was associated with an increased risk of misclassifications of cases.

CONCLUSION

Including sleep variability and activity parameters alongside measures of sleep quantity improves the characterization of cases of euthymic BD and helps distinguish them from HC. If replicated, the findings indicate that traditional approaches to actigraphy (examining mean values for the standard set of sleep parameters) may represent a suboptimal approach to understanding sleep-wake cycles in BD.

摘要

目的

探究与健康对照者(HC)相比,哪种客观测量的活动记录仪参数组合能更好地表征双相情感障碍(BD)患者的单相抑郁期的睡眠-觉醒周期。

方法

61 例 BD 病例和 61 例匹配的 HC 连续 21 天进行活动记录仪检测。使用判别函数分析(DFA)比较各组,该分析探索了从睡眠参数平均值中得出的维度(模型 1);睡眠参数的可变性(2);白天活动(3);以及综合睡眠和活动参数(4)。探索性的组内分析检查了与错误分类相关的特征。

结果

在控制了抑郁症状后,综合模型(4)正确分类了 75%的病例,而睡眠模型(1 和 2)正确分类了 87%的对照者。曲线下面积有利于综合模型(0.86)。年龄与 HC 中的错误分类显著相关,而 BD-II 的诊断与病例错误分类的风险增加相关。

结论

将睡眠变异性和活动参数与睡眠量的测量值结合起来,可以更好地描述单相抑郁期的 BD 病例,并有助于将其与 HC 区分开来。如果得到复制,这些发现表明,传统的活动记录仪方法(检查标准睡眠参数集的平均值)可能代表了理解 BD 中睡眠-觉醒周期的一种次优方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验