Suppr超能文献

回归中方差模型的使用与滥用

Use and abuse of variance models in regression.

作者信息

van Houwelingen J C

机构信息

Department of Medical Statistics, University of Leiden, The Netherlands.

出版信息

Biometrics. 1988 Dec;44(4):1073-81.

PMID:3069138
Abstract

In (nonlinear) regression with heteroscedastic errors, introduction of a variance model can be useful to obtain good estimators of the regression parameter. For example, the variance model can be used to obtain the optimal weights in weighted least squares. Methodology of this kind is often used in the analysis of assay data in clinical chemistry, pharmacokinetics, and toxicology. In a series of papers in the pharmacological literature, Sheiner and Beal and others advocate the extended least squares (ELS) methodology that combines regression and variance model into a single objective function based on normal-theory maximum likelihood. The inadequacy of this method is folklore in the (mathematical) statistical literature. In this article it is pointed out that this methodology may lead to inconsistent estimators in practically relevant situations. A review is given of other methods that may be preferable to ELS.

摘要

在具有异方差误差的(非线性)回归中,引入方差模型有助于获得回归参数的良好估计量。例如,方差模型可用于在加权最小二乘法中获得最优权重。这类方法常用于临床化学、药代动力学和毒理学的分析数据中。在药理学文献的一系列论文中,谢纳和比尔等人提倡扩展最小二乘法(ELS),该方法基于正态理论最大似然将回归和方差模型结合到一个单一目标函数中。在(数学)统计文献中,这种方法的不足之处是大家都知道的。本文指出,在实际相关情况下,这种方法可能会导致估计量不一致。还对可能比ELS更可取的其他方法进行了综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验