van Houwelingen J C
Department of Medical Statistics, University of Leiden, The Netherlands.
Biometrics. 1988 Dec;44(4):1073-81.
In (nonlinear) regression with heteroscedastic errors, introduction of a variance model can be useful to obtain good estimators of the regression parameter. For example, the variance model can be used to obtain the optimal weights in weighted least squares. Methodology of this kind is often used in the analysis of assay data in clinical chemistry, pharmacokinetics, and toxicology. In a series of papers in the pharmacological literature, Sheiner and Beal and others advocate the extended least squares (ELS) methodology that combines regression and variance model into a single objective function based on normal-theory maximum likelihood. The inadequacy of this method is folklore in the (mathematical) statistical literature. In this article it is pointed out that this methodology may lead to inconsistent estimators in practically relevant situations. A review is given of other methods that may be preferable to ELS.
在具有异方差误差的(非线性)回归中,引入方差模型有助于获得回归参数的良好估计量。例如,方差模型可用于在加权最小二乘法中获得最优权重。这类方法常用于临床化学、药代动力学和毒理学的分析数据中。在药理学文献的一系列论文中,谢纳和比尔等人提倡扩展最小二乘法(ELS),该方法基于正态理论最大似然将回归和方差模型结合到一个单一目标函数中。在(数学)统计文献中,这种方法的不足之处是大家都知道的。本文指出,在实际相关情况下,这种方法可能会导致估计量不一致。还对可能比ELS更可取的其他方法进行了综述。