Suppr超能文献

基于神经影像学的分类算法,用于预测 - 突变型低级别胶质瘤中的 1p/19q 缺失状态。

Neuroimaging-Based Classification Algorithm for Predicting 1p/19q-Codeletion Status in -Mutant Lower Grade Gliomas.

机构信息

From the Department of Radiology and Medical Imaging (P.P.B., T.J.E.M., J.H.D., S.H.P.).

Department of Public Health Sciences (J.T.P.).

出版信息

AJNR Am J Neuroradiol. 2019 Mar;40(3):426-432. doi: 10.3174/ajnr.A5957. Epub 2019 Jan 31.

Abstract

BACKGROUND AND PURPOSE

()-mutant lower grade gliomas are classified as oligodendrogliomas or diffuse astrocytomas based on 1p/19q-codeletion status. We aimed to test and validate neuroradiologists' performances in predicting the codeletion status of -mutant lower grade gliomas based on simple neuroimaging metrics.

MATERIALS AND METHODS

One hundred two -mutant lower grade gliomas with preoperative MR imaging and known 1p/19q status from The Cancer Genome Atlas composed a training dataset. Two neuroradiologists in consensus analyzed the training dataset for various imaging features: tumor texture, margins, cortical infiltration, T2-FLAIR mismatch, tumor cyst, T2* susceptibility, hydrocephalus, midline shift, maximum dimension, primary lobe, necrosis, enhancement, edema, and gliomatosis. Statistical analysis of the training data produced a multivariate classification model for codeletion prediction based on a subset of MR imaging features and patient age. To validate the classification model, 2 different independent neuroradiologists analyzed a separate cohort of 106 institutional -mutant lower grade gliomas.

RESULTS

Training dataset analysis produced a 2-step classification algorithm with 86.3% codeletion prediction accuracy, based on the following: 1) the presence of the T2-FLAIR mismatch sign, which was 100% predictive of noncodeleted lower grade gliomas, ( = 21); and 2) a logistic regression model based on texture, patient age, T2* susceptibility, primary lobe, and hydrocephalus. Independent validation of the classification algorithm rendered codeletion prediction accuracies of 81.1% and 79.2% in 2 independent readers. The metrics used in the algorithm were associated with moderate-substantial interreader agreement (κ = 0.56-0.79).

CONCLUSIONS

We have validated a classification algorithm based on simple, reproducible neuroimaging metrics and patient age that demonstrates a moderate prediction accuracy of 1p/19q-codeletion status among -mutant lower grade gliomas.

摘要

背景与目的

根据 1p/19q 缺失状态,()-突变型低级别胶质瘤被分类为少突胶质细胞瘤或弥漫性星形细胞瘤。我们旨在测试和验证神经放射科医生基于简单神经影像学指标预测()-突变型低级别胶质瘤缺失状态的能力。

材料与方法

从癌症基因组图谱中,共有 102 例术前磁共振成像(MRI)且已知 1p/19q 状态的()-突变型低级别胶质瘤组成训练数据集。两名神经放射科医生在共识的基础上对训练数据集进行了各种影像学特征分析:肿瘤纹理、边缘、皮质浸润、T2-FLAIR 不匹配、肿瘤囊肿、T2*敏感性、脑积水、中线移位、最大尺寸、原发叶、坏死、增强、水肿和神经胶质瘤病。对训练数据的统计分析产生了基于磁共振成像特征和患者年龄的亚组的缺失预测的多变量分类模型。为了验证分类模型,2 名不同的独立神经放射科医生分析了 106 例机构性()-突变型低级别胶质瘤的独立队列。

结果

训练数据集分析产生了一个两步分类算法,其缺失预测准确率为 86.3%,基于以下特征:1)T2-FLAIR 不匹配征象的存在,该征象对非缺失型低级别胶质瘤具有 100%的预测性(=21);2)基于纹理、患者年龄、T2*敏感性、原发叶和脑积水的逻辑回归模型。分类算法的独立验证在 2 名独立读者中得出了 81.1%和 79.2%的缺失预测准确率。算法中使用的指标与中度-高度的观察者间一致性相关(κ=0.56-0.79)。

结论

我们验证了一种基于简单、可重复的神经影像学指标和患者年龄的分类算法,该算法在()-突变型低级别胶质瘤中显示出 1p/19q 缺失状态的中等预测准确性。

相似文献

引用本文的文献

9
Advances in diffuse glial tumors diagnosis.弥漫性神经胶质瘤的诊断进展。
Arq Neuropsiquiatr. 2023 Dec;81(12):1134-1145. doi: 10.1055/s-0043-1777729. Epub 2023 Dec 29.

本文引用的文献

4
MRI Features Can Predict 1p/19q Status in Intracranial Gliomas.MRI 特征可预测颅内胶质瘤的 1p/19q 状态。
AJNR Am J Neuroradiol. 2018 Apr;39(4):687-692. doi: 10.3174/ajnr.A5572. Epub 2018 Mar 8.
5
Role of Biopsies in the Management of Intracranial Gliomas.活检在颅内胶质瘤治疗中的作用
Prog Neurol Surg. 2018;30:232-243. doi: 10.1159/000464439. Epub 2017 Dec 14.
10
Imaging Correlates of Adult Glioma Genotypes.成人脑胶质瘤基因型的影像学相关性。
Radiology. 2017 Aug;284(2):316-331. doi: 10.1148/radiol.2017151930.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验