Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy , South China University of Technology , Guangzhou 510006 , China.
Institute of Inorganic Chemistry , RWTH Aachen University , Landoltweg 1 , Aachen 52074 , Germany.
ACS Appl Mater Interfaces. 2019 Feb 27;11(8):8097-8105. doi: 10.1021/acsami.8b22104. Epub 2019 Feb 13.
The concept to utilize a catalyst directly as a sensor is fundamentally and technically attractive for a number of catalytic applications, in particular, for the catalytic abatement of automotive emission. Here, we explore the potential of microporous copper-exchanged chabazite (Cu-CHA, including Cu-SSZ-13 and Cu-SAPO-34) zeolite catalysts, which are used commercially in the selective catalytic reduction of automotive nitrogen oxide emission by NH (NH-SCR), as impedance sensor elements to monitor directly the NH-SCR process. The NH-SCR sensing behavior of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts at typical reaction temperatures (i.e., 200 and 350 °C) was evaluated according to the change of ionic conductivity and was mechanistically investigated by complex impedance-based in situ modulus spectroscopy. Short-range (local) movement of Cu ions within the zeolite structure was found to determine largely the NH-SCR sensing behavior of both catalysts. Formation of NH-solvated, highly mobile Cu species showed a predominant influence on the ionic conductivity of both catalysts and, consequently, hindered NH-SCR sensing at 200 °C. Density functional theory calculations over a model Cu-SAPO-34 system revealed that Cu reduction to Cu by coadsorbed NH and NO weakened significantly the coordination of the Cu site to the CHA framework, enabling high mobility of Cu species that influences substantially the NH-SCR sensing. The in situ spectroscopic and theoretical investigations not only unveil the mechanisms of Cu-CHA catalyst as sensor elements for direct NH-SCR monitoring but also allow us to get insights into the speciation of active Cu sites in NH-SCR under different reaction conditions with varied temperatures and gas compositions.
将催化剂直接用作传感器的概念在许多催化应用中具有基础和技术吸引力,特别是在汽车排放的催化减排方面。在这里,我们探索了微孔铜交换丝光沸石(Cu-CHA,包括 Cu-SSZ-13 和 Cu-SAPO-34)沸石催化剂的潜力,这些催化剂在商业上用于通过 NH(NH-SCR)选择性催化还原汽车氮氧化物排放,作为阻抗传感器元件直接监测 NH-SCR 过程。根据离子电导率的变化,评估了商业 Cu-SSZ-13 和 Cu-SAPO-34 催化剂在典型反应温度(即 200 和 350°C)下的 NH-SCR 传感行为,并通过基于复阻抗的原位模量光谱学进行了机理研究。发现沸石结构内 Cu 离子的短程(局部)运动在很大程度上决定了两种催化剂的 NH-SCR 传感行为。NH 溶剂化的、高迁移性的 Cu 物种的形成对两种催化剂的离子电导率表现出主要影响,从而阻碍了 200°C 时的 NH-SCR 传感。在 Cu-SAPO-34 模型体系上进行的密度泛函理论计算表明,共吸附的 NH 和 NO 将 Cu 还原为 Cu 大大削弱了 Cu 位与 CHA 骨架的配位,使 Cu 物种具有高迁移性,这对 NH-SCR 传感有很大影响。原位光谱学和理论研究不仅揭示了 Cu-CHA 催化剂作为直接 NH-SCR 监测传感器元件的作用机制,还使我们能够深入了解在不同温度和气体组成的反应条件下 NH-SCR 中活性 Cu 位的形态。