Suppr超能文献

流动诱导的 HeLa 细胞脱落动力学表明,氧化石墨烯中的含氧官能团是有效的细胞黏附增强剂。

Flow induced HeLa cell detachment kinetics show that oxygen-containing functional groups in graphene oxide are potent cell adhesion enhancers.

机构信息

Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic.

出版信息

Nanoscale. 2019 Feb 14;11(7):3222-3228. doi: 10.1039/c8nr08994a.

Abstract

A broader and quantitative understanding of cell adhesion to two-dimensional carbon-based materials is needed to expand the applications of graphene and graphene oxide (GO) in tissue engineering, prosthetics, biosensing, detection of circulating cancer cells, and (photo)thermal therapy. We therefore studied the detachment kinetics of human cancer cells HeLa adhered on graphene, GO, and glass substrates using stagnation point flow on an impinging jet apparatus. HeLa cells detached easily from graphene at a force of 9.4 nN but adhered very strongly to GO. The presence of hydrophilic functional groups thus apparently enhanced the HeLa cells' adherence to the GO surface. On graphene, smaller HeLa cells adhered more strongly and detached later than cells with larger projected areas, but the opposite behavior was observed on GO. These findings reveal GO to be a suitable platform for detecting cells or establishing contacts, e.g. between graphene-based circuits/electrodes and tissues. Our experiments also show that the impinging jet method is a powerful tool for studying cellular detachment mechanisms and adhesion strength, and could therefore be very useful for investigating interactions between cells and graphene-based materials.

摘要

为了将石墨烯和氧化石墨烯 (GO) 在组织工程、假肢、生物传感、循环癌细胞检测和 (光) 热疗中的应用扩展,需要更广泛和定量地了解细胞对二维碳基材料的粘附。因此,我们使用冲击射流装置上的停滞点流研究了人癌细胞 HeLa 在石墨烯、GO 和玻璃基底上的脱离动力学。HeLa 细胞在 9.4 nN 的力下很容易从石墨烯上脱离,但与 GO 紧密结合。因此,亲水官能团的存在显然增强了 HeLa 细胞对 GO 表面的粘附。在石墨烯上,较小的 HeLa 细胞比具有较大投影面积的细胞粘附更强,脱离时间更晚,但在 GO 上则观察到相反的行为。这些发现表明 GO 是检测细胞或建立接触的合适平台,例如在基于石墨烯的电路/电极和组织之间。我们的实验还表明,冲击射流方法是研究细胞脱离机制和粘附强度的有力工具,因此对于研究细胞与基于石墨烯的材料之间的相互作用非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验