Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
J Pain. 2019 Aug;20(8):885-897. doi: 10.1016/j.jpain.2019.01.329. Epub 2019 Jan 29.
The present study investigated the role of the amygdala N-methyl-d-aspartate (NMDA) receptors/nitric oxide synthase pathway in morphine-induced anti-allodynia. Concurrently with the bilateral cannulation of the central amygdala, chronic constriction of the sciatic nerve was performed on male Wistar rats. Morphine (3-5 mg/kg) was administered intraperitoneally to induce anti-allodynia. When D-AP5, a selective NMDA receptor antagonist, (.05-.1 µg/rat) or NG-Nitro-L-arginine methyl ester hydrochloride (L-NAME), the nitric oxide synthase inhibitor (.1-.5 µg/rat), were microinjected into the central amygdala, the higher doses potentiated an ineffective dose of morphine (3 mg/kg). Microinjection of the same doses of D-AP5 and L-NAME without morphine had no effect. Comicroinjection of the ineffective doses of L-NAME (.1 µg/rat) and D-AP5 (.05 µg/rat) with a 5-minute interval, enhanced the anti-allodynic effect of morphine (3 mg/kg). Western blot analysis was employed to evaluate the levels of cyclic adenosine monophosphate-response element-binding protein (CREB) and phosphorylated CREB (pCREB) in the amygdala tissues. Our results showed that neuropathic pain increased the pCREB/CREB ratio in the amygdala, and this ratio was decreased after morphine-induced anti-allodynia. The potentiative effect of the coadministration of D-AP5/L-NAME on an ineffective dose of morphine also decreased the amygdala pCREB/CREB levels. Therefore, it seems that the amygdala pCREB/CREB signaling pathway plays a critical role in processing neuropathic pain. Moreover, the glutamate NMDA receptors and nitric oxide system in the amygdala may be involved in morphine-induced anti-allodynia. PERSPECTIVE: Neuropathic pain is difficult to treat and the exact mechanisms remain unknown. This article suggests the importance of the amygdala glutamatergic and nitric oxide systems in morphine-induced anti-allodynia. These findings might be used in clinical studies to reach a better understanding of neuropathic pain mechanisms and treatment.
本研究探讨了杏仁核 N-甲基-D-天冬氨酸(NMDA)受体/一氧化氮合酶通路在吗啡诱导抗痛觉过敏中的作用。在双侧杏仁核中央导管插入的同时,对雄性 Wistar 大鼠进行坐骨神经慢性缩窄。腹腔内给予吗啡(3-5mg/kg)诱导抗痛觉过敏。当将选择性 NMDA 受体拮抗剂 D-AP5(0.05-0.1μg/大鼠)或一氧化氮合酶抑制剂 NG-硝基-L-精氨酸甲酯盐酸盐(L-NAME,0.1-0.5μg/大鼠)微注射到杏仁核中央时,较高剂量增强了无效剂量的吗啡(3mg/kg)的作用。没有吗啡时,相同剂量的 D-AP5 和 L-NAME 微注射没有效果。间隔 5 分钟共微注射无效剂量的 L-NAME(0.1μg/大鼠)和 D-AP5(0.05μg/大鼠),增强了吗啡(3mg/kg)的抗痛觉过敏作用。采用 Western blot 分析评估杏仁核组织中环磷酸腺苷反应元件结合蛋白(CREB)和磷酸化 CREB(pCREB)的水平。结果表明,神经病理性疼痛增加了杏仁核中的 pCREB/CREB 比值,而吗啡诱导抗痛觉过敏后该比值降低。D-AP5/L-NAME 共给药对无效剂量吗啡的增强作用也降低了杏仁核中的 pCREB/CREB 水平。因此,似乎杏仁核 pCREB/CREB 信号通路在处理神经病理性疼痛中起关键作用。此外,杏仁核中的谷氨酸 NMDA 受体和一氧化氮系统可能参与吗啡诱导的抗痛觉过敏。观点:神经病理性疼痛难以治疗,确切机制尚不清楚。本文提示了杏仁核谷氨酸能和一氧化氮系统在吗啡诱导抗痛觉过敏中的重要性。这些发现可能用于临床研究,以更好地了解神经病理性疼痛的机制和治疗。