Suppr超能文献

快速优化的蒙特卡罗相空间生成与低能 X 射线术中放射治疗剂量预测。

Fast optimized Monte Carlo phase-space generation and dose prediction for low energy x-ray intra-operative radiation therapy.

机构信息

Grupo de Física Nuclear and IPARCOS, Dpto. Estructura de la Materia, Física Térmica y Electrónica, CEI Moncloa, Universidad Complutense de Madrid, Madrid, Spain. The first two authors of this work have made equal contributions to the manuscript and the associated scientific research.

出版信息

Phys Med Biol. 2019 Mar 21;64(7):075002. doi: 10.1088/1361-6560/ab03e7.

Abstract

Low energy x-ray intra-operative radiation therapy (IORT) is used mostly for breast cancer treatment with spherical applicators. X-ray IORT treatment delivered during surgery (ex: INTRABEAM, Carl Zeiss) can benefit from accurate and fast dose prediction in a patient 3D volume. However, full Monte Carlo (MC) simulations are time-consuming and no commercial treatment planning system (TPS) was available for this treatment delivery technique. Therefore, the aim of this work is to develop a dose computation tool based on MC phase space information, which computes fast and accurate dose distributions for spherical and needle INTRABEAM applicators. First, a database of monoenergetic phase-space (PHSP) files and depth dose profiles (DDPs) in water for each applicator is generated at factory and stored for on-site use. During commissioning of a given INTRABEAM unit, the proposed fast and optimized phase-space (FOPS) generation process creates a phase-space at the exit of the applicator considered, by fitting the energy spectrum of the source to a combination of the monoenergetic precomputed phase-spaces, by means of a genetic algorithm, with simple experimental data of DDPs in water provided by the user. An in-house hybrid MC (HMC) algorithm which takes into account condensed history simulations of photoelectric, Rayleigh and Compton interactions for x-rays up to 1 MeV computes the dose from the optimized phase-space file. The whole process has been validated against radiochromic films in water as well as reference MC simulations performed with penEasy in heterogeneous phantoms. From the pre-computed monoenergetic PHSP files and DDPs, building the PHSP file optimized to a particular depth-dose curve in water only takes a few minutes in a single core (i7@2.5 GHz), for all the applicators considered in this work, and this needs to be done only when the x-ray source (XRS) is replaced. Once the phase-space file is ready, the HMC code is able to compute dose distributions within 10 min. For all the applicators, more than 95% of voxels from dose distributions computed with the FOPS+hybrid code agreed within 7%-0.5 mm with both reference MC simulations and measurements. The method proposed has been fully validated and it is now implemented into radiance (GMV SA, Spain), the first commercial IORT TPS.

摘要

低能量 X 射线术中放射治疗(IORT)主要用于球形施源器治疗乳腺癌。在手术中进行 X 射线 IORT 治疗(例如 INTRABEAM,卡尔蔡司)可以从患者 3D 体积中的准确快速剂量预测中受益。然而,全蒙特卡罗(MC)模拟耗时较长,并且没有商业治疗计划系统(TPS)可用于这种治疗输送技术。因此,这项工作的目的是开发一种基于 MC 相空间信息的剂量计算工具,该工具可以快速准确地计算球形和针状 INTRABEAM 施源器的剂量分布。首先,在工厂生成每个施源器的单能相空间(PHSP)文件和水中深度剂量分布(DDP)数据库,并存储在现场使用。在给定 INTRABEAM 装置的调试期间,所提出的快速优化相空间(FOPS)生成过程通过使用遗传算法将源的能谱拟合到由用户提供的水中预计算的单能相空间组合来创建考虑的施源器出口处的相空间,通过简单的 DDP 实验数据。一种考虑光电、瑞利和康普顿相互作用的凝聚历史模拟的内部混合 MC(HMC)算法用于计算来自优化相空间文件的剂量。整个过程已用水中的放射色胶片以及在不均匀体模中使用 penEasy 进行的参考 MC 模拟进行了验证。从预计算的单能 PHSP 文件和 DDP 中,仅在单个核心(i7@2.5 GHz)中仅需几分钟即可为水中特定深度剂量曲线构建优化的 PHSP 文件,这需要在更换 X 射线源(XRS)时完成。一旦准备好相空间文件,HMC 代码就能够在 10 分钟内计算剂量分布。对于所有施源器,用 FOPS+混合代码计算的剂量分布中的超过 95%的体素在 7%至 0.5mm 内与参考 MC 模拟和测量值一致。所提出的方法已得到充分验证,现已在 Radiance(GMV SA,西班牙)中实施,这是第一个商业 IORT TPS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验