Suppr超能文献

基于采样定理和分数展宽的线性调频信号参数估计

Parameter estimation of linear frequency modulation signals based on sampling theorem and fractional broadening.

作者信息

Liu Xuelian, Han Jun, Wang Chunyang, Xiao Bo

机构信息

School of Optoelectronic Engineering, Xi'an Technological University, 710021 Xi'an, China.

Information Perception and Control Institute, Xi'an Technological University, 710021 Xi'an, China.

出版信息

Rev Sci Instrum. 2019 Jan;90(1):014702. doi: 10.1063/1.5041031.

Abstract

Linear frequency modulation (LFM) signals are a class of important radar signals, but it is difficult to estimate their parameters in electronic warfare. Fractional Fourier transform (FRFT) is one of the most important methods for estimating the parameters of LFM signals, but the computational efficiency is strongly influenced by the search range and evaluation of the optimum FRFT order. To improve the estimation speed, we present a novel method for the parameter estimation of LFM signals using sampling theorem and fractional broadening. First, sampling theorem is used to calculate the search range of the optimum FRFT transform order. Then, the LFM signals are transformed by FRFT in the search range. Finally, the fractional broadening of the LFM signals is calculated, and the optimum FRFT order is obtained according to the relationship between the fractional broadening and the FRFT order. Experiments are performed to compare the proposed method and the traditional FRFT method. The results show that the proposed method is six times faster than the traditional FRFT method while preserving the accuracy. Moreover, it can quickly and accurately achieve the parameter estimation of multi-component LFM signals in the case of white Gaussian noise with a low signal-to-noise ratio.

摘要

线性调频(LFM)信号是一类重要的雷达信号,但在电子战中难以对其参数进行估计。分数阶傅里叶变换(FRFT)是估计LFM信号参数的最重要方法之一,但其计算效率受搜索范围和最佳FRFT阶数评估的强烈影响。为提高估计速度,我们提出一种利用采样定理和分数展宽的LFM信号参数估计新方法。首先,利用采样定理计算最佳FRFT变换阶数的搜索范围。然后,在搜索范围内用FRFT对LFM信号进行变换。最后,计算LFM信号的分数展宽,并根据分数展宽与FRFT阶数的关系得到最佳FRFT阶数。进行实验以比较所提方法和传统FRFT方法。结果表明,所提方法比传统FRFT方法快六倍,同时保持了精度。此外,在低信噪比的高斯白噪声情况下,它能快速准确地实现多分量LFM信号的参数估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验