University of Science and Technology of China, Department of Polymer Science and Engineering, Hefei 230026, China.
Ondokuz Mayıs University, Faculty of Engineering, Chemical Engineering Department, 55139 Kurupelit, Samsun, Turkey.
Bioresour Technol. 2019 May;279:67-73. doi: 10.1016/j.biortech.2019.01.106. Epub 2019 Jan 24.
The identification of biomasses for pyrolytic conversion to biofuels depends on many factors, including: moisture content, elemental and volatile matter composition, thermo-kinetic parameters, and evolved gases. The present work illustrates how canola residue may be a suitable biofuel feedstock for low-temperature (<450 °C) slow pyrolysis with energetically favorable conversions of up to 70 wt% of volatile matter. Beyond this point, thermo-kinetic parameters and activation energies, which increase from 154.3 to 400 kJ/mol from 65 to 80% conversion, suggest that the energy required to initiate conversion is thermodynamically unfavorable. This is likely due to its higher elemental carbon content than similar residues, leading to enhanced carbonization rather than devolatilization at higher temperatures. Evolved gas analysis supports limiting pyrolysis temperature; ethanol and methane conversions are maximized below 500 °C with ∼6% water content. Carbon dioxide is the dominant evolved gas beyond this temperature.
生物质的鉴定用于热解转化为生物燃料取决于许多因素,包括:水分含量、元素和挥发分组成、热动力学参数和释放气体。本工作说明了油菜残体如何可能成为适合低温(<450°C)慢速热解的生物燃料原料,挥发分的能量有利转化率高达 70wt%。超过这一点,热动力学参数和活化能从 65%转化率的 154.3 到 400 kJ/mol 增加,表明开始转化所需的能量在热力学上是不利的。这可能是由于其元素碳含量高于类似残渣,导致在较高温度下碳化而不是挥发。释放气体分析支持限制热解温度;乙醇和甲烷转化率在 500°C 以下,含水量约为 6%时最大化。超过该温度,二氧化碳是主要释放气体。