Department of Chemistry , University of Virginia , PO Box 400319, Charlottesville , Virginia 22904-4319 , United States.
J Am Chem Soc. 2019 Mar 13;141(10):4379-4387. doi: 10.1021/jacs.8b13373. Epub 2019 Feb 27.
The selective electrocatalytic reduction of dioxygen (O) to hydrogen peroxide (HO) could be an alternative to the anthraquinone process used industrially, as well as enable the on-demand production of a useful chemical oxidant, obviating the need for long-term storage. There are challenges associated with this, since the two-proton/two-electron reduction of HO to two equivalents of water (HO) or disproportionation to O and HO can be competing reactions. Recently, we reported a Mn(III) Schiff base-type complex, Mn(dhbpy)Cl, where 6,6'-di(3,5-di- tert-butyl-2-phenolate)-2,2'-bipyridine = [dhbpy], which is active for the electrocatalytic reduction of O to HO (ca. 80% selectivity). The less-than-quantitative selectivity could be attributed in part to a thermal disproportionation reaction of HO to O and HO. To understand the mechanism in greater detail, spectrochemical stopped-flow and electrochemical techniques were employed to examine the catalytic rate law and kinetic reaction parameters. Under electrochemical conditions, the catalyst produces HO by an ECCEC mechanism with appreciable rates down to overpotentials of 20 mV and exhibits a catalytic response with a strong dependence on proton donor p K. Mechanistic studies suggest that under spectrochemical conditions, where the homogeneous reductant decamethylferrocene (Cp*Fe) is used, HO is instead produced via a disproportionation pathway, which does not show a strong acid dependence. These results demonstrate that differences in mechanistic pathways can occur for homogeneous catalysts in redox processes, dependent on whether an electrode or homogeneous reductant is used.
氧气(O)选择性电催化还原为过氧化氢(HO)可以替代工业上使用的蒽醌法,并且能够按需生产有用的化学氧化剂,避免了长期储存的需要。然而,这面临着一些挑战,因为 HO 被两质子/两电子还原为两当量的水(HO)或歧化为 O 和 HO 可能是竞争反应。最近,我们报道了一种 Mn(III)Schiff 碱型配合物 Mn(dhbpy)Cl,其中 6,6'-二(3,5-二叔丁基-2-苯氧基)-2,2'-联吡啶=[dhbpy],该配合物可有效电催化 O 还原为 HO(约 80%选择性)。低于定量的选择性部分可归因于 HO 的热歧化反应为 O 和 HO。为了更详细地了解该机制,采用光谱化学停流和电化学技术来研究催化速率定律和动力学反应参数。在电化学条件下,该催化剂通过 ECCEC 机制以可观的速率产生 HO,直至过电势超过 20 mV,并表现出与质子供体 pKa 强依赖的催化响应。机理研究表明,在光谱化学条件下,使用均相还原剂十甲基二茂铁(Cp*Fe)时,HO 是通过歧化途径产生的,该途径对强酸依赖性不强。这些结果表明,在氧化还原过程中,均相催化剂的机理途径可能因使用电极或均相还原剂而有所不同。