Suppr超能文献

一种带有CMOS放大器芯片的温度补偿绝缘体上硅(SOI)单晶微机电系统(MEMS)振荡器。

A Temperature-Compensated Single-Crystal Silicon-on-Insulator (SOI) MEMS Oscillator with a CMOS Amplifier Chip.

作者信息

Islam Mohammad S, Wei Ran, Lee Jaesung, Xie Yong, Mandal Soumyajit, Feng Philip X-L

机构信息

Department of Electrical Engineering & Computer Science, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.

出版信息

Micromachines (Basel). 2018 Oct 29;9(11):559. doi: 10.3390/mi9110559.

Abstract

Self-sustained feedback oscillators referenced to MEMS/NEMS resonators have the potential for a wide range of applications in timing and sensing systems. In this paper, we describe a real-time temperature compensation approach to improving the long-term stability of such MEMS-referenced oscillators. This approach is implemented on a 26.8 kHz self-sustained MEMS oscillator that integrates the fundamental in-plane mode resonance of a single-crystal silicon-on-insulator (SOI) resonator with a programmable and reconfigurable single-chip CMOS sustaining amplifier. Temperature compensation using a linear equation fit and look-up table (LUT) is used to obtain the near-zero closed-loop temperature coefficient of frequency (TC) at around room temperature (25 °C). When subject to small temperature fluctuations in an indoor environment, the temperature-compensated oscillator shows a >2-fold improvement in Allan deviation over the uncompensated counterpart on relatively long time scales (averaging time τ > 10,000 s), as well as overall enhanced stability throughout the averaging time range from τ = 1 to 20,000 s. The proposed temperature compensation algorithm has low computational complexity and memory requirement, making it suitable for implementation on energy-constrained platforms such as Internet of Things (IoT) sensor nodes.

摘要

以微机电系统(MEMS)/纳机电系统(NEMS)谐振器为参考的自持反馈振荡器在定时和传感系统中具有广泛的应用潜力。在本文中,我们描述了一种实时温度补偿方法,以提高此类基于MEMS的振荡器的长期稳定性。该方法在一个约26.8 kHz的自持MEMS振荡器上实现,该振荡器将绝缘体上硅(SOI)谐振器的基本面内模式共振与可编程且可重构的单芯片CMOS维持放大器集成在一起。使用线性方程拟合和查找表(LUT)进行温度补偿,以在室温(约25°C)附近获得接近零的闭环频率温度系数(TC)。当在室内环境中受到小的温度波动影响时,在相对较长的时间尺度上(平均时间τ> 10,000 s),温度补偿后的振荡器在阿仑方差方面比未补偿的振荡器提高了两倍以上,并且在从τ = 1到20,000 s的整个平均时间范围内稳定性总体增强。所提出的温度补偿算法具有低计算复杂度和内存需求,使其适合在诸如物联网(IoT)传感器节点等能量受限平台上实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4ce/6266509/73b5723d5400/micromachines-09-00559-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验