Gunasinghe N, You M P, Lanoiselet V, Eyres N, Barbetti M J
School of Plant Biology, Faculty Science, The University of Western Australia, Crawley, WA 6009, Australia.
Department of Agriculture and Food Western Australia, Baron-Hay Court, South Perth, WA 6151, Australia, and School of Plant Biology, Faculty Science, The University of Western Australia, Crawley, WA 6009, Australia.
Plant Dis. 2013 Sep;97(9):1256. doi: 10.1094/PDIS-03-13-0299-PDN.
Inspection of field plantings of diverse cruciferous species, mainly oilseed varieties sown for agronomic assessment at Crawley, (31.99°S, 115.82°E), Western Australia, in September 2012, indicated the occurrence of extensive leaf and stem colonization by powdery mildew at the late flowering stage, with whitish patches 3 to 4 cm in length on stems of Brassica campestris var. pekinensis, B. carinata, B. oleracea var. capitata, B. rapa, Eruca sativa, and E. vesicaria. These patches coalesced to form a dense, white, powdery layer. Infected leaves showed signs of early senescence. Pathogenicity was demonstrated from transferring field inoculum from the most susceptible variety by pressing diseased leaves onto leaves of the six potted plant species, and incubating plants in a moist chamber for 48 hours post-inoculation (hpi) in an air-conditioned glasshouse approximating 25°C. Signs of powdery mildew were evident by 7 days post-inoculation (dpi), and well developed symptoms by 10 dpi and as observed in the field. Uninoculated control plants did not develop powdery mildew. On all inoculated species, abundant conidia typical of those produced by Erysiphe cruciferarum were observed, matching the descriptions of conidia given by Purnell and Sivanesan (3), with cylindrical conidia typically borne singly or in short chains. Mycelia were amphigenous, in patches, often spreading to become effused. Conidiophores were 3 to 4 cells, unbranched, and foot cells cylindrical. Across all host species, conidia were mostly produced singly with overall mean measured lengths 19.7 to 35.4 μm (mean 26.9 μm), and measured widths 7.1 to 12.9 μm (mean 9.7 μm), from measurements taken on 200 conidia for each of the six different species. Spore sizes measured approximated those found for E. cruciferarum by Kaur et al. (1) on B. juncea in Western Australia (viz. 21.2 to 35.4 × 8.8 to 15.9 μm), but were smaller than those reported by Purnell and Sivanesan (3) (viz. 30 to 40 × 12 to 16 μm) or by Koike and Saenz (1) (viz. 35 to 50 × 12 to 21 μm). We confirmed a length-to-width ratio >2 (mean range 2.7 to 2.8 across all six species) as found by both Purnell and Sivanesan (3) and Koike and Saenz (2). Amplification of the internal transcribed spacer (ITS)1 and (ITS)2 regions flanking the 5.8S rRNA gene was carried out with universal primers ITS1 and ITS4 and PCR products from E. cruciferarum from B. oleracea var. capitata and B. rapa sequenced. BLAST analyses to compare sequences with those in GenBank showed a >99% nucleotide identity for E. cruciferarum. In Western Australia, E. cruciferarum has been recorded on B. napus var. napobrassica since 1971 (4), B. napus since 1986 (4), and on B. juncea since 2008 (1). In other regions of Australia, E. cruciferarum has been recorded on B. campestris, B. oleracea var. capitata, B. oleracea var. acephala, B. napus, B. napus var. naprobrassica, and B. rapa var. rapa. To the best of our knowledge, this is the first record of E. cruciferarum on B. campestris var. pekinensis, B. carinata, E. sativa, and E. vesicaria in Australia and on B. rapa and B. oleracea var. capitata in Western Australia. Powdery mildew epidemics on other brassicas in Western Australia are generally sporadic and it remains to be seen what the impact of this disease will be on these new host species. References: (1) P. Kaur et al. Plant Dis. 92:650, 2008. (2) S. T. Koike and G. S. Saenz. Plant Dis. 81:1093, 1997. (3) T. J. Purnell and A. Sivanesan. No. 251 in IMI Descriptions of Fungi and Bacteria, 1970. (4) R. G. Shivas. J. Royal Soc. West. Aust. 72:1, 1989.
2012年9月,在西澳大利亚州克劳利(南纬31.99°,东经115.82°)对多种十字花科植物进行田间种植检查,这些主要是为进行农艺评估而播种的油籽品种。结果表明,在开花后期,白粉病广泛侵染叶片和茎部,白菜型油菜变种北京白菜、埃塞俄比亚芥、甘蓝变种卷心菜、油菜、芝麻菜和野生芝麻菜的茎上出现了3至4厘米长的白色斑块。这些斑块融合形成一层密集的白色粉状物。受感染的叶片出现早期衰老迹象。通过将病叶压在6种盆栽植物的叶片上,从最易感品种转移田间接种物,并在温度约25°C的空调温室中接种后在保湿箱中培养48小时,证明了其致病性。接种后7天可见白粉病迹象,10天时症状充分发展,与田间观察到的症状相同。未接种的对照植物未发生白粉病。在所有接种的物种上,均观察到大量典型的十字花科白粉菌产生的分生孢子,与珀内尔和西瓦内桑(3)给出的分生孢子描述相符,圆柱形分生孢子通常单个或短链状着生。菌丝体两面生,呈斑块状,常扩展融合。分生孢子梗3至4个细胞,无分枝,基部细胞圆柱形。对所有寄主物种而言,分生孢子大多单个产生,从对6种不同物种各200个分生孢子的测量结果来看,总体平均测量长度为19.7至35.4μm(平均26.9μm),测量宽度为7.1至12.9μm(平均9.7μm)。测量的孢子大小与考尔等人(1)在西澳大利亚州芥菜上发现的十字花科白粉菌的大小相近(即21.2至35.4×8.8至15.9μm),但小于珀内尔和西瓦内桑(3)报道的大小(即30至40×12至16μm)或小池和萨恩斯(1)报道的大小(即35至50×12至21μm)。我们证实长宽比>2(所有6个物种的平均范围为2.7至2.8),这与珀内尔和西瓦内桑(3)以及小池和萨恩斯(2)的发现一致。使用通用引物ITS1和ITS4对5.8S rRNA基因两侧的内转录间隔区(ITS)1和(ITS)2区域进行扩增,并对甘蓝变种卷心菜和油菜上的十字花科白粉菌的PCR产物进行测序。与GenBank中的序列进行比较的BLAST分析显示,十字花科白粉菌的核苷酸同一性>99%。在西澳大利亚州,自1971年以来(4),十字花科白粉菌已在芜菁变种芜菁甘蓝上被记录,自1986年以来(4)在甘蓝型油菜上被记录,自2008年以来(1)在芥菜上被记录。在澳大利亚的其他地区,十字花科白粉菌已在白菜、甘蓝变种卷心菜、甘蓝变种羽衣甘蓝、甘蓝型油菜、芜菁变种芜菁甘蓝和油菜变种油菜上被记录。据我们所知,这是十字花科白粉菌在澳大利亚的白菜型油菜变种北京白菜、埃塞俄比亚芥、芝麻菜和野生芝麻菜上以及在西澳大利亚州的油菜和甘蓝变种卷心菜上的首次记录。西澳大利亚州其他芸苔属植物上的白粉病流行通常是零星发生的,这种病害对这些新寄主物种的影响还有待观察。参考文献:(1)P.考尔等人,《植物病害》92:650,2008年。(2)S.T.小池和G.S.萨恩斯《植物病害》81:1093,1997年。(3)T.J.珀内尔和A.西瓦内桑,《英联邦真菌研究所真菌和细菌描述》第251号,1970年。(4)R.G.希瓦斯,《西澳大利亚皇家学会杂志》72:1,1989年。