Suppr超能文献

塞内加尔图皮镰刀菌引起芒果畸形病的首次报告。

First Report of Mango Malformation Disease Caused by Fusarium tupiense in Senegal.

作者信息

Senghor A Lamine, Sharma K, Kumar P Lava, Bandyopadhyay R

机构信息

Laboratory of Plant Pathology, Direction de la Protection des Végétaux, Ministry of Agriculture, Senegal.

International Institute of Tropical Agriculture (IITA), PMB 5320, Ibadan, Nigeria.

出版信息

Plant Dis. 2012 Oct;96(10):1582. doi: 10.1094/PDIS-07-12-0623-PDN.

Abstract

Mango (Mangifera indica L.) is an economically important export crop for Senegal, producing about 100,000 tons of fruit annually. In April 2009, severe outbreaks of a new disorder occurred in mango orchards in the southeastern part of Casamance. Diseased plants showed abnormal growth of vegetative shoots with short thickened internodes and malformed inflorescence with short leaves interspersed among thickened sterile flowers that aborted early. These symptoms resembled those caused by mango malformation disease (4). To identify the causal agent, floral and vegetative samples from symptomatic mango plants were collected from Kolda district (12°53' N, 14°56' W). Malformed tissues were cut into 4-mm pieces, surface sterilized with 75% ethanol for 2 min, dried, and plated on the Fusarium isolation medium Peptone PCNB Agar (PPA) (2). Fungal growth with Fusarium morphology were transferred on PPA and further purified on water agar as single spore isolates. Cultures were identified on the basis of spore characters on carnation leaf agar and colony morphology on PDA (2). Two isolates (I and I) were similar to F. mangiferae/F. sterilihyphosum/F. tupiense complex (3). Macroconidia were slender, slightly falcate, three- to five-septate, 18.5 to 27.7 × 1.1 to 2.3 μm with slightly curved apical cell produced on cream to orange sporodochia. Microconidia were single-celled, oval, 3.7 to 13.6 × 0.75 to 1.1 μm produced on mono- and polyphialides in false heads. Chlamydospores were absent. To confirm the identity, genomic DNA was isolated from pure cultures of I and I, used for amplification of portion of translation elongation factor (TEF-1α). Amplified products (241 bp) were purified and sequenced in both directions (GenBank Accession Nos. JX272929 and JX272930). A BLASTn search revealed 100% sequence identity with F. tupiense (DQ452860), 99% identity with F. mangiferae (HM135531) and F. sterilihyphosum (DQ452858) from Brazil. Phylogenetic analysis inferred from the Clustalw alignment of TEF-1α sequences clustered I and I isolates with F. tupiense (3). To confirm Koch's postulates, 2-year-old healthy mango seedlings var. Keitt and Kent (12 plants each) were inoculated by placing 20 μl conidial suspension (5 × 10 conidia ml) on micro-wounds created in apical and lateral buds. Inoculated buds were covered with filter paper soaked in the same spore suspension (1). Seedlings inoculated similarly with sterile distilled water served as control. Seven months after the inoculation, typical malformation symptoms were observed on vegetative parts on all inoculated plants, but not on control plants. F. tupiense was reisolated from symptomatic shoots of inoculated plants. Based on the morphological characteristics, sequence analysis, and pathogenicity test, the pathogen of mango malformation in Senegal was identified as F. tupiense (3). To our knowledge, this is the first confirmed record in Senegal of mango malformation caused by F. tupiense. This disease is a serious threat to mango production and trade of Senegal. Urgent actions are necessary to stop this emerging epidemic that can spread to other countries in West Africa. References: (1) S. Freeman et al. Phytopathol. 6:456, 1999. (3) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual, Blackwell Publishing, Ames, IA, 2006. (4) C. S. Lima et al. Mycologia. 104: in press (doi: 10.3852/12-052). (2) W. F. O. Marasas et al. Phytopathol. 96:667, 2006.

摘要

芒果(Mangifera indica L.)是塞内加尔一种具有重要经济意义的出口作物,年产量约为10万吨。2009年4月,卡萨芒斯东南部的芒果果园爆发了一种新的严重病害。患病植株营养枝生长异常,节间短而增粗,花序畸形,短叶夹杂在早期败育的增粗不育花之间。这些症状与芒果畸形病引起的症状相似(4)。为了鉴定病原体,从科尔达区(北纬12°53′,西经14°56′)有症状的芒果植株上采集了花和营养组织样本。将畸形组织切成4毫米的小块,用75%乙醇表面消毒2分钟,干燥后接种在镰刀菌分离培养基蛋白胨五氯硝基苯琼脂(PPA)上(2)。具有镰刀菌形态的真菌生长物转移到PPA上,并在水琼脂上进一步纯化,作为单孢子分离物。根据康乃馨叶琼脂上的孢子特征和PDA上的菌落形态对培养物进行鉴定(2)。两个分离物(I和I)与芒果镰刀菌/无菌丝镰刀菌/图皮镰刀菌复合体相似(3)。大型分生孢子细长,稍呈镰刀形,三至五分隔,18.5至27.7×1.1至2.3μm,顶端细胞稍弯曲,产生于奶油色至橙色的分生孢子座上。小型分生孢子单细胞,椭圆形,3.7至13.6×0.75至1.1μm,产生于假头状的单瓶梗和多瓶梗上。无厚垣孢子。为了确认其身份,从I和I的纯培养物中分离基因组DNA,用于扩增翻译延伸因子(TEF-1α)的部分片段。扩增产物(241bp)进行纯化并双向测序(GenBank登录号:JX272929和JX272930)。BLASTn搜索显示与来自巴西的图皮镰刀菌(DQ452860)序列同一性为100%,与芒果镰刀菌(HM135531)和无菌丝镰刀菌(DQ452858)序列同一性为99%。根据TEF-1α序列的Clustalw比对推断的系统发育分析将I和I分离物与图皮镰刀菌聚类(3)。为了证实科赫法则,将20μl分生孢子悬浮液(5×10个分生孢子/ml)置于2岁健康芒果品种Keitt和Kent的顶芽和侧芽上造成的微伤口上,对其进行接种(各12株)。接种的芽用浸泡在相同孢子悬浮液中的滤纸覆盖(1)。同样用无菌蒸馏水接种的幼苗作为对照。接种7个月后,在所有接种植株的营养部分观察到典型的畸形症状,但对照植株未出现。从接种植株有症状的枝条上重新分离到图皮镰刀菌。根据形态特征、序列分析和致病性试验,确定塞内加尔芒果畸形病的病原体为图皮镰刀菌(3)。据我们所知,这是塞内加尔首次确认由图皮镰刀菌引起芒果畸形病的记录。这种病害对塞内加尔的芒果生产和贸易构成严重威胁。必须采取紧急行动来阻止这种可能蔓延到西非其他国家的新出现的流行病。参考文献:(1)S. Freeman等人,《植物病理学》6:456,1999年。(3)J. F. Leslie和B. A. Summerell,《镰刀菌实验室手册》,布莱克韦尔出版社,艾姆斯,爱荷华州,2006年。(4)C. S. Lima等人,《真菌学》104:即将出版(doi: 10.3852/12 - 052)。(2)W. F. O. Marasas等人,《植物病理学》96:667,2006年。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验