Suppr超能文献

电感受、电发生和电信号进化。

Electroreception, electrogenesis and electric signal evolution.

机构信息

Department of Biology, University of Central Florida, Orlando, Florida, USA.

出版信息

J Fish Biol. 2019 Jul;95(1):92-134. doi: 10.1111/jfb.13922. Epub 2019 Mar 18.

Abstract

Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.

摘要

电感受性,即使用专门的受体来检测外部水下电场的能力,是鱼类和两栖类中广泛存在的一种进化感觉模态。在被动电感受性中,约 16%的鱼类物种拥有这种能力,它们利用低频调谐的壶腹电感受器来检测来自猎物的微伏级生物电场,而无需产生自己的电场。在主动电感受性(电定位)中,这种能力仅存在于硬骨鱼的 Mormyroidea 和 Gymnotiformes 两个谱系中,动物通过产生一个弱 (<1 V) 的电器官放电 (EOD),并用高频调谐的管突电感受器检测与 EOD 相关的场中的扭曲来感知周围环境。管突电感受器还可以检测到邻近鱼类的 EOD,从而促进电通讯。其他几个软骨鱼和硬骨鱼群体也会产生弱 (<10 V) 或强 (>50 V) 的 EOD,这些 EOD 有助于通讯或捕食,但不能用于电定位。大约 1.5%的鱼类拥有电器官。本综述有两个目的。首先,综合我们对鱼类电感受性和电发生的功能生物学和系统发育分布的了解,重点是淡水分类群,并强调 EOD 和电感受器多样性的直接(形态、生理和遗传)基础。其次,描述 Mormyroidea 和 Gymnotiformes 的多样性、生物地理学、生态学和电信号多样性,并探讨信号和受体多样性在它们趋同的发电-电感觉系统中的终极(进化)基础。讨论了四组潜在的信号多样性驱动因素或调节因素。首先,环境因素的选择压力,以实现 EOD 的最佳电定位和通讯性能。其次,生物因素的选择压力,针对 EOD 的通讯功能,包括性选择、来自同域同种异性的繁殖干扰和来自偷听捕食者的选择。第三,非适应性漂移,最后,系统发育惯性,这可能源于最佳信号-受体匹配的稳定选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验