Institut für Mechanik, Fachbereich für Ingenieurwissenschaften/Abtl. Bauwissenschaften, Universität Duisburg-Essen, Universitätsstr. 15, 45141, Essen, Germany.
Institut für Kontinuumsmechanik, Gottfried Wilhelm Leibniz Universität Hannover, Appelstr. 11, 30167, Hannover, Germany.
Biomech Model Mechanobiol. 2019 Aug;18(4):897-920. doi: 10.1007/s10237-019-01119-3. Epub 2019 Feb 9.
This paper investigates on the relationship between the arrangement of collagen fibers within soft tissues and parameters of constitutive models. Starting from numerical experiments based on biaxial loading conditions, the study addresses both the direct (from structure to mechanics) and the inverse (from mechanics to structure) problems, solved introducing optimization problems for model calibration and regression analysis. A campaign of parametric analyses is conducted in order to consider fibers distributions with different main orientation and angular dispersion. Different anisotropic constitutive models are employed, accounting for fibers dispersion either with a generalized structural approach or with an increasing number of strain energy terms. Benchmark data sets, toward which constitutive models are fitted, are built by employing a multiscale description of fiber nonlinearities and accounting for fibers dispersion with an angular integration method. Results show how the optimal values of constitutive parameters obtained from model calibration vary as a function of fibers arrangement and testing protocol. Moreover, the fitting capabilities of constitutive models are discussed. A novel strategy for model calibration is also proposed, in order to obtain a robust accuracy with respect to different loading conditions starting from a low number of mechanical tests. Furthermore, novel results useful for the inverse determination of the mean angle and the variance of fibers distribution are obtained. Therefore, the study contributes: to better design procedures for model calibration; to account for mechanical alterations due to remodeling mechanisms; and to gain structural information in a nondestructive way.
本文研究了软组织中胶原纤维排列与本构模型参数之间的关系。从基于双轴加载条件的数值实验出发,本研究解决了直接问题(从结构到力学)和逆问题(从力学到结构),通过模型校准和回归分析的优化问题来解决。进行了一系列参数分析,以考虑具有不同主方向和角分布的纤维分布。采用不同的各向异性本构模型,通过广义结构方法或增加应变能项的数量来考虑纤维的分散。通过采用纤维非线性的多尺度描述并采用角积分方法来考虑纤维分散,构建了用于本构模型拟合的基准数据集。结果表明,从模型校准中获得的本构参数的最优值如何随纤维排列和测试方案而变化。此外,还讨论了本构模型的拟合能力。还提出了一种新的模型校准策略,以便在进行少量力学测试的情况下,针对不同的加载条件获得稳健的准确性。此外,还获得了有助于反向确定纤维分布的均值角和方差的新结果。因此,本研究的贡献在于:更好地设计模型校准程序;考虑到重塑机制引起的力学变化;以及以非破坏性方式获得结构信息。