Suppr超能文献

共振理论重启。

Resonance Theory Reboot.

机构信息

Department of Chemistry and Physics , Indiana State University , Terre Haute , Indiana 47809 , United States.

Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.

出版信息

J Am Chem Soc. 2019 Mar 13;141(10):4156-4166. doi: 10.1021/jacs.8b12336. Epub 2019 Feb 21.

Abstract

What is now called "resonance theory" has a long and conflicted history. We first sketch the early roots of resonance theory, its heritage of diverse physics and chemistry conceptions, and its subsequent rise to reigning chemical bonding paradigm of the mid-20th century. We then outline the alternative "natural" pathway to localized Lewis- and resonance-structural conceptions that was initiated in the 1950s, given semi-empirical formulation in the 1970s, recast in ab initio form in the 1980s, and successfully generalized to multi-structural "natural resonance theory" (NRT) form in the 1990s. Although earlier numerical applications were often frustrated by the ineptness of then-available numerical solvers, the NRT variational problem was recently shown to be amenable to highly efficient convex programming methods that yield provably optimal resonance weightings at a small fraction of previous computational costs. Such convexity-based algorithms now allow a full "reboot" of NRT methodology for tackling a broad range of chemical applications, including the many familiar resonance phenomena of organic and biochemistry as well as the still broader range of resonance attraction effects in the inorganic domain. We illustrate these advances for prototype chemical applications, including (i) stable near-equilibrium species, where resonance mixing typically provides only small corrections to a dominant Lewis-structural picture, (ii) reactive transition-state species, where strong resonance mixing of reactant and product bonding patterns is inherent, (iii) coordinative and related supramolecular interactions of the inorganic domain, where sub-integer resonance bond orders are the essential origin of intermolecular attraction, and (iv) exotic long-bonding and metallic delocalization phenomena, where no single "parent" Lewis-structural pattern gains pre-eminent weighting in the overall resonance hybrid.

摘要

现在所谓的“共振理论”有着悠久而复杂的历史。我们首先勾勒出共振理论的早期根源,它继承了多种物理学和化学概念,以及它随后在 20 世纪中叶上升为统治性的化学键合范式。然后,我们概述了从 20 世纪 50 年代开始的、以局部路易斯和共振结构概念为导向的替代“自然”途径,该途径在 20 世纪 70 年代得到了半经验公式的表述,在 20 世纪 80 年代被重新表述为从头计算形式,并在 20 世纪 90 年代成功推广到多结构“自然共振理论”(NRT)形式。尽管早期的数值应用由于当时可用的数值求解器的不熟练而经常受挫,但 NRT 变分问题最近被证明是可以通过高效的凸规划方法来解决的,该方法可以以以前计算成本的一小部分比例得出可证明的最佳共振加权。这种基于凸性的算法现在允许对 NRT 方法进行全面“重启”,以解决广泛的化学应用问题,包括有机和生物化学中的许多常见共振现象以及无机领域中更广泛的共振吸引效应。我们用原型化学应用来说明这些进展,包括:(i)稳定的近平衡物种,其中共振混合通常只对主导的路易斯结构图像提供小的修正;(ii)反应过渡态物种,其中反应物和产物键合模式的强烈共振混合是固有存在的;(iii)无机领域的配位和相关超分子相互作用,其中亚整数共振键序是分子间吸引的基本起源;(iv)奇异的长键合和金属离域现象,其中没有单一的“母体”路易斯结构模式在整个共振杂化中获得优先加权。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验