Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Centro de Desarrollo Urbano Sustentable CONICYT/FONDAP/15110020, El Comendador 1916, Providencia, Santiago 7520245, Chile.
Sci Total Environ. 2018 Dec 10;644:1580-1590. doi: 10.1016/j.scitotenv.2018.07.063. Epub 2018 Jul 23.
Many pedotransfer functions (PTFs) have been developed for predicting the soil water content at different matric potentials. The use of these functions has been encouraged because of the time and work typically required for measuring it, while the PTFs require commonly measured soil properties such as sand, silt, clay, organic matter content, or bulk density for predicting water retention. In addition, several environmental and ecosystem management simulation models such as DRAINMOD, HYDRUS, EPIC, SPAW, and WEPP use PTFs for computing soil hydraulic properties. Because of the increasing use of the PTFs and their effect in many soil water simulation and transport models, this study revised and tested 13 different PTFs for predicting soil water content at -33 and -1500 kPa, values usually known as field capacity and wilting point. Three of these PTFs were derived from tropical soils while the rest were developed with soil samples collected across the United States. These PTFs were evaluated in Chilean soils as an independent dataset and their improvement after calibration was assessed with this new data. The results demonstrate that the PTFs performance depends on the soils used for their development as the estimates showed a significant improvement after calibration. When predicting water content, Rawls et al. (2004) was the best function before calibration (RMSE = 0.08 for -33 and -1500 kPa), while Gupta and Larson (1979) was the best after calibration (RMSE of 0.06 and 0.05, and r values of 0.69 and 0.66 at -33 and -1500 kPa, respectively). Nonlinear PTFs performed better than linear PTFs when predicting water content at field capacity. Finally, bulk density proved to be the key variable and can be used as footprint for soils changes through time. Organic matter content was also a significant input but improved the estimates for some specific matric potentials and PTFs.
许多土壤转移函数(PTF)已经被开发出来,用于预测不同基质势下的土壤含水量。由于测量土壤含水量通常需要耗费大量的时间和精力,因此这些函数被广泛应用。而 PTF 则需要利用常见的土壤性质,如砂、粉砂、黏土、有机质含量或体密度,来预测水分保持能力。此外,一些环境和生态系统管理模拟模型,如 DRAINMOD、HYDRUS、EPIC、SPAW 和 WEPP,也使用 PTF 来计算土壤水力性质。由于 PTF 的应用日益广泛,以及其对许多土壤水分模拟和传输模型的影响,本研究对 13 种不同的 PTF 进行了修订和测试,以预测-33 和-1500 kPa 下的土壤含水量,这两个值通常被称为田间持水量和萎蔫点。其中 3 种 PTF 来自热带土壤,其余的则是利用美国各地采集的土壤样本开发的。这些 PTF 作为独立数据集在智利土壤中进行了评估,并根据新数据评估了其校准后的改进情况。结果表明,PTF 的性能取决于其开发所使用的土壤,因为经过校准后,估计值有了显著的提高。在预测含水量时,未经校准的 Rawls 等人(2004 年)函数(-33 和-1500 kPa 时的 RMSE 分别为 0.08)是最好的函数,而经过校准后的 Gupta 和 Larson(1979 年)函数(-33 和-1500 kPa 时的 RMSE 分别为 0.06 和 0.05,r 值分别为 0.69 和 0.66)则是最好的。在预测田间持水量时,非线性 PTF 比线性 PTF 表现更好。最后,体密度被证明是关键变量,可以用作随时间推移的土壤变化的足迹。有机质含量也是一个重要的输入,但它可以改善某些特定基质势和 PTF 的估计值。