Suppr超能文献

采用溶剂可及表面积能作为关键决定因素,构建有效预测模型并确定针对 HIV-1 整合酶-LEDGF/p75 界面的抑制剂的结合残基。

Effective prediction model and determination of binding residues influential for inhibitors targeting HIV-1 integrase-LEDGF/p75 interface by employing solvent accessible surface area energy as key determinant.

机构信息

Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Muang, Chiang Mai, Thailand.

Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Muang, Chiang Mai, Thailand.

出版信息

J Biomol Struct Dyn. 2020 Feb;38(2):460-473. doi: 10.1080/07391102.2019.1580219. Epub 2019 Feb 27.

Abstract

Development of a highly accurate prediction model for protein-ligand inhibition has been a major challenge in drug discovery. Herein, we describe a novel predictive model for the inhibition of HIV-1 integrase (IN)-LEDGF/p75 protein-protein interaction. The model was constructed using energy parameters approximated from molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. Chemometric analysis using partial least squares (PLS) regression revealed that solvent accessible surface area energy (Δ) is the major determinant parameter contributing greatly to the prediction accuracy. PLS prediction model on the Δ values collected from 41 complexes yielded a strong correlation between the predicted and the actual inhibitory activities ( = 0.9666, RMSEC of IC values = 0.0890). Additionally, for the test set of 14 complexes, the model performed satisfactorily with very low pIC errors ( = 0.5168, RMSEP = 0.3325). A strong correlation between the buried surface areas on the IN protein, when bound with IN-LEDGF/p75 inhibitors, and the respective Δ values was also obtained. Furthermore, the current method could identify 'hot spots'of amino acid residues highly influential to the inhibitory activity prediction. This could present fruitful implications in binding site determination and future inhibitor developments targeting protein-protein interactions.Communicated by Ramaswamy H. Sarma.

摘要

开发高度准确的蛋白质配体抑制预测模型一直是药物发现中的主要挑战。在此,我们描述了一种新的 HIV-1 整合酶(IN)-LEDGF/p75 蛋白-蛋白相互作用抑制的预测模型。该模型是使用从分子动力学(MD)模拟和分子力学泊松-玻尔兹曼表面面积(MM-PBSA)计算中近似的能量参数构建的。使用偏最小二乘(PLS)回归的化学计量分析表明,溶剂可及表面积能(Δ)是对预测准确性贡献很大的主要决定参数。从 41 个复合物中收集的Δ值的 PLS 预测模型产生了预测和实际抑制活性之间的强相关性(= 0.9666,IC 值的 RMSEC = 0.0890)。此外,对于 14 个复合物的测试集,该模型表现良好,pIC 误差非常低(= 0.5168,RMSEP = 0.3325)。还获得了 IN 蛋白与 IN-LEDGF/p75 抑制剂结合时的埋藏表面积与相应的Δ值之间的强相关性。此外,目前的方法可以识别对抑制活性预测高度有影响的氨基酸残基“热点”。这可能对结合位点确定和针对蛋白质-蛋白质相互作用的未来抑制剂开发具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验