Han Haixiang, Wei Zheng, Filatov Alexander S, Carozza Jesse C, Alkan Melisa, Rogachev Andrey Yu, Shevtsov Andrey, Abakumov Artem M, Pak Chongin, Shatruk Michael, Chen Yu-Sheng, Dikarev Evgeny V
Department of Chemistry , University at Albany , SUNY , Albany , NY 12222 , USA . Email:
Department of Chemistry , University of Chicago , Chicago , IL 60637 , USA.
Chem Sci. 2018 Oct 16;10(2):524-534. doi: 10.1039/c8sc03816c. eCollection 2019 Jan 14.
Design of heterometallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn(thd) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMnO. Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two heterometallic complexes, LiMn Co (thd) ( = 1 () and 0.5 ()), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of heterometallic compounds. Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise "site-specific Mn/Co elemental analysis" in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of heterometallic species LiMnCo(thd) rather than a statistical mixture of two heterometallic LiMn(thd) and LiCo(thd) molecules. Heterometallic precursors and were found to exhibit a clean decomposition yielding phase-pure LiMnCoO and LiMnCoO spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important "5 spinel" cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors.
异金属分子的设计,尤其是那些包含至少两种原子序数相近、半径相同且配位数/配位环境相同的不同金属的分子,是一项具有挑战性的任务。拥有一个具有多个金属位点且其中只有一些显示出取代灵活性的异双金属母体分子,极大地促进了这一探索。最近,一种独特的异双金属配合物LiMn(thd)(thd = 2,2,6,6 - 四甲基 - 3,5 - 庚二酮)已被引入作为制备一种流行的尖晶石阴极材料LiMnO的单源前驱体。理论计算令人信服地预测,在上述三核分子中,只有一个Mn位点具有足够的灵活性,可以被另一种3d过渡金属取代。根据这些预测,已经合成了两种异金属配合物LiMn₁₋ₓCoₓ(thd)₃(x = 1 (100%)和0.5 (50%)),它们分别代表了母体分子中Co对Mn的完全和部分取代。X射线结构解析清楚地表明,在三核分子中只有一个过渡金属位置含有Co,而另一个位点仍然完全被Mn占据。已经采用了多种技术来解析异金属化合物的结构和组成。同步加速器共振衍射实验明确地确定了3d过渡金属的位置,并在单晶中提供了精确的“位点特异性Mn/Co元素分析”,即使在由两种对映体叠加形成的严重无序结构的极其困难的情况下也是如此。DART质谱和磁性测量清楚地证实了异金属物种LiMnCo(thd)₃的存在,而不是两种异金属LiMn(thd)₃和LiCo(thd)₃分子的统计混合物。发现异金属前驱体LiMn₁₋ₓCoₓ(thd)₃在相对较低的400℃温度下分别表现出干净的分解,产生相纯的LiMnCoO₂和LiMn₀.₅Co₀.₅O₂尖晶石。后一种氧化物是锂离子电池的一种重要的“532型尖晶石”阴极材料。透射电子显微镜证实了通过单源前驱体热解获得的四元氧化物中过渡金属的均匀分布。