Suppr超能文献

使用皮层内和硬膜外阵列对神经活动进行解码以预测大鼠运动。

Decoding neural activity to predict rat locomotion using intracortical and epidural arrays.

机构信息

Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.

出版信息

J Neural Eng. 2019 Jun;16(3):036005. doi: 10.1088/1741-2552/ab0698. Epub 2019 Feb 12.

Abstract

OBJECTIVE

Recovery of voluntary gait after spinal cord injury (SCI) requires the restoration of effective motor cortical commands, either by means of a mechanical connection to the limbs, or by restored functional connections to muscles. The latter approach might use functional electrical stimulation (FES), driven by cortical activity, to restore voluntary movements. Moreover, there is evidence that this peripheral stimulation, synchronized with patients' voluntary effort, can strengthen descending projections and recovery. As a step towards establishing such a cortically-controlled FES system for restoring function after SCI, we evaluate here the type and quantity of neural information needed to drive such a brain machine interface (BMI) in rats. We compared the accuracy of the predictions of hindlimb electromyograms (EMG) and kinematics using neural data from an intracortical array and a less-invasive epidural array.

APPROACH

Seven rats were trained to walk on a treadmill with a stable pattern. One group of rats (n  =  4) was implanted with intracortical arrays spanning the hindlimb sensorimotor cortex and EMG electrodes in the contralateral hindlimb. Another group (n  =  3) was implanted with epidural arrays implanted on the dura overlying hindlimb sensorimotor cortex. EMG, kinematics and neural data were simultaneously recorded during locomotion. EMGs and kinematics were decoded using linear and nonlinear methods from multiunit activity and field potentials.

MAIN RESULTS

Predictions of both kinematics and EMGs were effective when using either multiunit spiking or local field potentials (LFPs) recorded from intracortical arrays. Surprisingly, the signals from epidural arrays were essentially uninformative. Results from somatosensory evoked potentials (SSEPs) confirmed that these arrays recorded neural activity, corroborating our finding that this type of array is unlikely to provide useful information to guide an FES-BMI for rat walking.

SIGNIFICANCE

We believe that the accuracy of our decoders in predicting EMGs from multiunit spiking activity is sufficient to drive an FES-BMI. Our future goal is to use this rat model to evaluate the potential for cortically-controlled FES to be used to restore locomotion after SCI, as well as its further potential as a rehabilitative technology for improving general motor function.

摘要

目的

脊髓损伤(SCI)后恢复自主步态需要恢复有效的皮质运动指令,这可以通过与肢体的机械连接来实现,也可以通过恢复与肌肉的功能性连接来实现。后一种方法可能使用功能性电刺激(FES),通过皮质活动来驱动,从而恢复自主运动。此外,有证据表明,这种与患者自主努力同步的外周刺激可以增强下行投射和恢复。为了在 SCI 后建立这样一种皮质控制的 FES 系统来恢复功能,我们在此评估在大鼠中驱动这种脑机接口(BMI)所需的神经信息的类型和数量。我们比较了使用皮质内阵列和微创硬膜外阵列中的神经数据来预测后肢肌电图(EMG)和运动学的准确性。

方法

七只大鼠接受训练,在稳定模式下在跑步机上行走。一组大鼠(n=4)被植入跨越后肢感觉运动皮质的皮质内阵列和对侧后肢的 EMG 电极。另一组(n=3)被植入硬膜外阵列,放置在后肢感觉运动皮质上方的硬脑膜上。在运动过程中同时记录 EMG、运动学和神经数据。使用线性和非线性方法从多单位活动和场电位中对 EMG 和运动学进行解码。

主要结果

当使用皮质内阵列记录的多单位放电或局部场电位(LFPs)时,对运动学和 EMG 的预测都是有效的。令人惊讶的是,硬膜外阵列的信号基本上没有信息量。体感诱发电位(SSEP)的结果证实,这些阵列记录了神经活动,这证实了我们的发现,即这种类型的阵列不太可能提供有用的信息来指导大鼠行走的 FES-BMI。

意义

我们相信,我们的解码器从多单位放电活动预测 EMG 的准确性足以驱动 FES-BMI。我们的未来目标是使用这种大鼠模型来评估皮质控制的 FES 恢复 SCI 后运动的潜力,以及它作为改善一般运动功能的康复技术的进一步潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验