Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St, Urbana, IL, 61801, USA.
Bull Math Biol. 2019 Aug;81(8):3159-3184. doi: 10.1007/s11538-019-00576-2. Epub 2019 Feb 13.
We propose an algorithm to reduce the variance of Monte Carlo simulation for the class of countable-state, continuous-time Markov chains, or lattice CTMCs. This broad class of systems includes all processes that can be represented using a random-time-change representation, in particular reaction networks. Numerical studies demonstrate order-of-magnitude reduction in MSE for Monte Carlo mean estimates using our approach for both linear and nonlinear systems. The algorithm works by simulating pairs of negatively correlated, identically distributed sample trajectories of the stochastic process and using them to produce variance-reduced, unbiased Monte Carlo estimates, effectively generalizing the method of antithetic variates into the domain of stochastic processes. We define a method to simulate anticorrelated, unit-rate Poisson process paths. We then show how these antithetic Poisson process pairs can be used as the input for random time-change representations of any lattice CTMC, in order to produce anticorrelated trajectories of the desired process. We present three numerical parameter studies. The first examines the algorithm's performance for the unit-rate Poisson process, and the next two demonstrate the effectiveness of the algorithm in simulating reaction network systems: a gene expression system with affine rate functions and an aerosol particle coagulation system with nonlinear rates. We also prove exact, analytical expressions for the time-resolved and integrated covariance between our antithetic Poisson processes for one technique.
我们提出了一种算法,用于减少可数状态、连续时间马尔可夫链(或格型 CTMC)类的蒙特卡罗模拟的方差。这个广泛的系统类别包括所有可以使用随机时变表示法表示的过程,特别是反应网络。数值研究表明,对于线性和非线性系统,我们的方法可以将蒙特卡罗均值估计的均方误差(MSE)降低一个数量级。该算法通过模拟随机过程的负相关、同分布样本轨迹对,并使用它们生成方差减小、无偏的蒙特卡罗估计值来工作,有效地将对偶变量法推广到随机过程领域。我们定义了一种模拟负相关、单位率泊松过程路径的方法。然后,我们展示了如何将这些对偶泊松过程对用作任何格型 CTMC 的随机时变表示的输入,以生成所需过程的负相关轨迹。我们提出了三个数值参数研究。第一个研究了算法在单位率泊松过程中的性能,接下来的两个研究展示了算法在模拟反应网络系统方面的有效性:具有仿射率函数的基因表达系统和具有非线性率的气溶胶粒子凝聚系统。我们还为我们的对偶泊松过程的一种技术证明了时间分辨和积分协方差的精确、解析表达式。