基于暴露-反应的产品特征驱动的临床效用指数,用于前列腺癌中伊帕替膦酸盐的剂量选择。

Exposure-Response-Based Product Profile-Driven Clinical Utility Index for Ipatasertib Dose Selection in Prostate Cancer.

机构信息

Genentech, Inc., South San Francisco, California, USA.

Certara, Menlo Park, California, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2019 Apr;8(4):240-248. doi: 10.1002/psp4.12394. Epub 2019 Mar 6.

Abstract

The aims of this work were to characterize ipatasertib exposure-response (E-R) relationships in a phase II study and to quantitatively assess benefit-risk using a clinical utility index approach to support ipatasertib phase III dose selection in patients with metastatic castration-resistant prostate cancer. Logistic regression and Cox proportional-hazards models characterized E-R relationships for safety and efficacy endpoints, respectively. Exposure metrics with and without considering dose interruptions/reductions (modifications) were tested in the E-R models. Despite a steeper E-R relationship when accounting for dose modifications, similar dose-response projections were generated. The clinical utility index analysis assessed important attributes, weights, and clinically meaningful cutoff/tradeoff values based on predefined minimal, target, and optimistic product profiles. Ipatasertib 400 mg daily, showing the highest probability of achieving the minimal product profiles and better benefit-risk balance than other doses (200-500 mg daily), was selected for further development in metastatic castration-resistant prostate cancer.

摘要

本研究旨在通过 II 期研究描述伊帕替斯巴(ipatasertib)的暴露-反应(E-R)关系,并采用临床实用指数方法定量评估获益-风险,以支持转移性去势抵抗性前列腺癌患者中伊帕替斯巴的 III 期剂量选择。逻辑回归和 Cox 比例风险模型分别对安全性和有效性终点的 E-R 关系进行了描述。在 E-R 模型中,测试了考虑和不考虑剂量中断/减少(修改)的暴露指标。尽管在考虑剂量修改时 E-R 关系更为陡峭,但仍得出了相似的剂量反应预测。临床实用指数分析根据预设的最小、目标和乐观产品特征,评估了重要属性、权重和有临床意义的临界值/权衡值。选择每日 400mg 的伊帕替斯巴(ipatasertib),因其具有最高的达到最小产品特征的概率,且与其他剂量(每日 200-500mg)相比具有更好的获益-风险平衡,因此被进一步开发用于转移性去势抵抗性前列腺癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74f3/6482275/60cff8284484/PSP4-8-240-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索