de Oliveira Ricardo Puziol, Menezes André F B, Mazucheli Josmar, Achcar Jorge A
Medical School, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
Department of Statistics, Universidade Estadual de Maringá, Paraná, PR, Brasil.
Biom J. 2019 Jul;61(4):813-826. doi: 10.1002/bimj.201800030. Epub 2019 Feb 14.
Different cure fraction models have been used in the analysis of lifetime data in presence of cured patients. This paper considers mixture and nonmixture models based on discrete Weibull distribution to model recurrent event data in presence of a cure fraction. The novelty of this study is the use of a discrete lifetime distribution in place of usual existing continuous lifetime distributions for lifetime data in presence of cured fraction, censored data, and covariates. In the verification of the fit of the proposed model it is proposed the use of randomized quantile residuals. An extensive simulation study is considered to evaluate the properties of the estimates of the parameters related to the proposed model. As an illustration of the proposed methodology, it is considered an application considering a medical dataset related to lifetimes in a retrospective cohort study conducted by Puchner et al. (2017) that consists of 147 consecutive cases with surgical treatment of a sarcoma of the pelvis between the years of 1980 and 2012.
在存在治愈患者的情况下,不同的治愈分数模型已被用于生存数据的分析。本文考虑基于离散威布尔分布的混合模型和非混合模型,以对存在治愈分数的复发事件数据进行建模。本研究的新颖之处在于,对于存在治愈分数、删失数据和协变量的生存数据,使用离散生存分布代替通常现有的连续生存分布。在验证所提出模型的拟合优度时,建议使用随机化分位数残差。考虑进行广泛的模拟研究,以评估与所提出模型相关的参数估计的性质。作为所提出方法的一个例证,考虑了一个应用,该应用涉及Puchner等人(2017年)进行的一项回顾性队列研究中的一个与生存期相关的医学数据集,该数据集由1980年至2012年期间147例连续接受骨盆肉瘤手术治疗的病例组成。