Suppr超能文献

用于治疗耐药性癌症的靶向共递化疗药物和光敏剂的核壳匹配纳米组装体。

Core-matched nanoassemblies for targeted co-delivery of chemotherapy and photosensitizer to treat drug-resistant cancer.

机构信息

Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China.

Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Shanghai 201399, PR China.

出版信息

Acta Biomater. 2019 Apr 1;88:406-421. doi: 10.1016/j.actbio.2019.02.009. Epub 2019 Feb 11.

Abstract

Emergence of drug resistance in tumors causes therapeutic failure or tumor relapse. Combination of chemotherapy and photodynamic therapy holds significant promise to treat drug-resistant tumors. However, stubborn hydrophobicity of photosensitizer (PS), low encapsulation efficiency and leaking problem of PS in organic carrier, and disparate physicochemical properties of PS and chemotherapeutics make the combination unachievable. Thus how to efficiently co-deliver the two functional agents to enable photo-chemotherapy seems to be one of the key challenges. Here, core-matched technology (CMT) was developed to realize efficient co-delivery of PS and chemotherapeutics, in which PS verteporfin (VP), tumor angiogenesis-targeting iNGR peptide and poly(lactic acid) (PLA) were respectively pre-modified with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), and the conjugates self-assembled into iNGR-modified and VP conjugated nanoassemblies (iNGR-VP-NA) with chemotherapeutic agent docetaxel (DTX) loaded in the hydrophobic core. The obtained iNGR-VP-NA-DTX was characterized by mean size of 166.0 ± 9.2 nm and morphology of uniformly spherical shape. In vitro, with the assistance of laser, iNGR-VP-NA-DTX exhibited higher cellular uptake, stronger cytotoxicity in HUVEC cells, drug-resistant HCT-15 tumor cells and more effective inhibition of tube formation than iNGR-VP-NA-DTX without laser or VP-NA-DTX with laser. After intravenously injected into mice, through the near-infrared light emitted by VP, iNGR-VP-NA exhibited improved accumulation compared to VP-NA in drug-resistant HCT-15 tumor. Besides, iNGR-VP-NA-DTX with laser enhanced inhibition of angiogenesis and induced severe apoptosis and necrosis in tumor tissues along with minimal impact to normal areas. These evidences demonstrated that iNGR-VP-NA-DTX was of great potential to treat drug-resistant tumors via efficient angiogenesis-targeted photo-chemotherapy. STATEMENT OF SIGNIFICANCE: Combination of chemotherapy and photodynamic therapy is thought to be a potential approach to treat drug-resistant cancer. However, it is difficult to realize optimized photo-chemotherapy in one nano-system. Here, iNGR-modified nanoassemblies is created based on core-matched nanotechnology to realize targeted photo-chemotherapy. In this study, the improved co-loading of chemotherapy and photosensitizer in the nanoassemblies exerted a synergistic anti-tumor effect and the decoration with iNGR enhanced tumor-targeting efficiency. In the presence of laser irradiation, the nanoassemblies exhibited enhanced and targeted anti-tumor efficacy in drug-resistant HCT-15 tumor both in vitro and in vivo.

摘要

肿瘤耐药性的出现导致治疗失败或肿瘤复发。化疗与光动力疗法相结合有望成为治疗耐药肿瘤的有效方法。然而,光敏剂(PS)的疏水性强、在有机载体中的包封效率低且 PS 易泄漏、PS 和化疗药物的理化性质差异较大等问题使得两者难以联合应用。因此,如何高效地共同递送两种功能药物以实现光化疗似乎是关键挑战之一。本研究采用核心匹配技术(CMT)实现了 PS 和化疗药物的高效共递,其中 PS 维替泊芬(VP)、肿瘤血管生成靶向 iNGR 肽和聚乳酸(PLA)分别被 D-α-生育酚聚乙二醇 1000 琥珀酸酯(TPGS)预修饰,所得缀合物自组装成载有化疗药物多西他赛(DTX)的 iNGR 修饰和 VP 共轭纳米组装体(iNGR-VP-NA)。所得到的 iNGR-VP-NA-DTX 的平均粒径为 166.0±9.2nm,形态为均匀的球形。体外实验中,在激光的辅助下,iNGR-VP-NA-DTX 表现出更高的细胞摄取率、对 HUVEC 细胞、耐药 HCT-15 肿瘤细胞更强的细胞毒性和更有效的管腔形成抑制作用,优于无激光的 iNGR-VP-NA-DTX 或有激光的 VP-NA-DTX。静脉注射入小鼠体内后,通过 VP 发出的近红外光,与 VP-NA 相比,iNGR-VP-NA 在耐药 HCT-15 肿瘤中的积累得到改善。此外,激光增强的 iNGR-VP-NA-DTX 抑制了血管生成,并在肿瘤组织中诱导了严重的细胞凋亡和坏死,同时对正常组织的影响最小。这些证据表明,iNGR-VP-NA-DTX 有望通过高效的血管靶向光化疗治疗耐药肿瘤。

意义声明

化疗与光动力疗法相结合被认为是治疗耐药癌症的一种有前途的方法。然而,在一个纳米系统中实现优化的光化疗是困难的。本研究基于核心匹配纳米技术构建了 iNGR 修饰的纳米组装体,以实现靶向光化疗。在这项研究中,纳米组装体中化疗药物和光敏剂的共载提高了协同抗肿瘤作用,iNGR 的修饰增强了肿瘤靶向效率。在激光照射下,纳米组装体在耐药 HCT-15 肿瘤的体外和体内均表现出增强的靶向抗肿瘤疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验