Department of Biological Sciences, School of Science, The University of Tokyo, 113-0033 Tokyo, Japan.
Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, 411-8540 Shizuoka, Japan.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4651-4660. doi: 10.1073/pnas.1812884116. Epub 2019 Feb 14.
Color discrimination in the vertebrate retina is mediated by a combination of spectrally distinct cone photoreceptors, each expressing one of multiple cone opsins. The opsin genes diverged early in vertebrate evolution into four classes maximally sensitive to varying wavelengths of light: UV (SWS1), blue (SWS2), green (RH2), and red (LWS) opsins. Although the tetrachromatic cone system is retained in most nonmammalian vertebrate lineages, the transcriptional mechanism underlying gene expression of the cone opsins remains elusive, particularly for SWS2 and RH2 opsins, both of which have been lost in the mammalian lineage. In zebrafish, which have all four cone subtypes, opsin gene expression depends on a homeobox transcription factor, homeobox 7 (Six7). However, the gene is found only in the ray-finned fish lineage, suggesting the existence of another evolutionarily conserved transcriptional factor(s) controlling opsin expression in vertebrates. Here, we found that the reduced expression caused by deficiency was rescued by forced expression of , which is a related transcription factor conserved widely among vertebrates. The compensatory role of was reinforced by ChIP-sequencing analysis, which revealed a similar pattern of Six6b- and Six7-binding sites within and near the cone opsin genes. TAL effector nuclease-induced genetic ablation of and revealed that they coordinately regulate SWS2 opsin gene expression. Mutant larvae deficient for these transcription factors showed severely impaired visually driven foraging behavior. These results demonstrate that in zebrafish, and govern expression of the SWS2 and RH2 opsins responsible for middle-wavelength sensitivity, which would be physiologically important for daylight vision.
脊椎动物视网膜中的颜色辨别是由光谱上明显不同的视锥感光细胞组合介导的,每个细胞都表达多种视锥光感受蛋白之一。这些光感受蛋白基因在脊椎动物进化早期就已经分化为四类,对光的波长具有最大的敏感性:紫外线(SWS1)、蓝光(SWS2)、绿光(RH2)和红光(LWS)视锥光感受蛋白。尽管四色视锥系统在大多数非哺乳动物脊椎动物谱系中都得到了保留,但这些视锥光感受蛋白基因表达的转录机制仍然难以捉摸,特别是对于 SWS2 和 RH2 视锥光感受蛋白,这两种蛋白在哺乳动物谱系中已经丢失。在具有所有四种视锥亚型的斑马鱼中,视锥光感受蛋白基因的表达依赖于一个同源盒转录因子,即同源盒 7(Six7)。然而,该基因仅在栉鳍鱼类谱系中被发现,这表明存在另一种进化上保守的转录因子(多个),控制脊椎动物视锥光感受蛋白的表达。在这里,我们发现,缺失 导致的 表达减少被强制表达 所挽救,而 是一种广泛存在于脊椎动物中的相关转录因子。ChIP-seq 分析进一步证实了 在脊椎动物中具有相似的作用,该分析揭示了在视锥光感受蛋白基因内和附近存在类似的 Six6b 和 Six7 结合位点。TAL 效应物核酸酶诱导的 和 基因遗传缺失表明,它们协同调控 SWS2 视锥光感受蛋白基因的表达。这些转录因子缺失的突变体幼虫表现出严重受损的视觉驱动觅食行为。这些结果表明,在斑马鱼中, 和 共同调控负责中波敏感的 SWS2 和 RH2 视锥光感受蛋白的表达,这对于日光视觉具有重要的生理意义。