Kleinert Sven, Tajalli Ayhan, Nagy Tamas, Morgner Uwe
Opt Lett. 2019 Feb 15;44(4):979-982. doi: 10.1364/OL.44.000979.
The knowledge of the temporal shape of femtosecond pulses is of major interest for all their applications. The reconstruction of the temporal shape of these pulses is an inverse problem for characterization techniques, which benefit from an inherent redundancy in the measurement. Conventionally, time-consuming optimization algorithms are used to solve the inverse problems. Here, we demonstrate the reconstruction of ultrashort pulses from dispersion scan traces employing a deep neural network. The network is trained with a multitude of artificial and noisy dispersion scan traces from randomly shaped pulses. The retrieval takes only 16 ms enabling video-rate reconstructions. This approach reveals a great tolerance against noisy conditions, delivering reliable retrievals from traces with signal-to-noise ratios down to 5.
飞秒脉冲的时间形状知识对于其所有应用都至关重要。这些脉冲时间形状的重建对于表征技术而言是一个逆问题,而测量中的固有冗余对此有益。传统上,耗时的优化算法被用于解决这些逆问题。在此,我们展示了使用深度神经网络从色散扫描迹线重建超短脉冲。该网络使用来自随机形状脉冲的大量人工且有噪声的色散扫描迹线进行训练。重建仅需16毫秒,可实现视频速率的重建。这种方法对噪声条件具有很强的耐受性,能够从信噪比低至5的迹线中可靠地重建。