Suppr超能文献

使用伯明翰-梅奥(BirMay)预测器对基线时具有供体特异性抗体的患者进行移植物丢失建模:对临床试验的影响。

Modeling graft loss in patients with donor-specific antibody at baseline using the Birmingham-Mayo (BirMay) predictor: Implications for clinical trials.

机构信息

Department of Renal Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK.

William J. von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota.

出版信息

Am J Transplant. 2019 Aug;19(8):2274-2283. doi: 10.1111/ajt.15312. Epub 2019 Mar 13.

Abstract

Predicting which renal allografts will fail and the likely cause of failure is important in clinical trial design to either enrich patient populations to be or as surrogate efficacy endpoints for trials aimed at improving long-term graft survival. This study tests our previous Birmingham-Mayo model (termed the BirMay Predictor) developed in a low-risk kidney transplant population in order to predict the outcome of patients with donor specific alloantibody (DSA) at the time of transplantation and identify new factors to improve graft loss prediction in DSA+ patients. We wanted define ways to enrich the population for future therapeutic intervention trials. The discovery set included 147 patients from Mayo Cohort and the validation set included 111 patients from the Paris Cohort-all of whom had DSA at the time of transplantation. The BirMay predictor performed well predicting 5-year outcome well in DSA+ patients (Mayo C statistic = 0.784 and Paris C statistic = 0.860). Developing a new model did not improve on this performance. A high negative predictive value of greater than 90% in both cohorts excluded allografts not destined to fail within 5 years. We conclude that graft-survival models including histology predict graft loss well, both in DSA+ cohorts as well as DSA- patients.

摘要

预测哪些肾移植会失败以及失败的可能原因对于临床试验设计很重要,既可以富集患者人群,也可以作为旨在提高长期移植物存活率的试验的替代疗效终点。本研究检验了我们之前在低危肾移植人群中开发的伯明翰-梅奥模型(称为 BirMay 预测器),以预测移植时具有供体特异性抗体(DSA)的患者的结局,并确定新的因素来改善 DSA+患者的移植物丢失预测。我们希望定义方法来丰富人群,以便进行未来的治疗干预试验。发现集包括来自梅奥队列的 147 名患者,验证集包括来自巴黎队列的 111 名患者 - 所有这些患者在移植时都有 DSA。BirMay 预测器在 DSA+患者中预测 5 年结局表现良好(梅奥 C 统计量为 0.784,巴黎 C 统计量为 0.860)。开发新模型并没有提高这种性能。在两个队列中,阴性预测值均大于 90%,排除了 5 年内不会失败的移植物。我们得出结论,包括组织学在内的移植物存活模型可以很好地预测 DSA+和 DSA-患者的移植物丢失。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验