Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wroclaw, Poland.
Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland.
Photodiagnosis Photodyn Ther. 2019 Mar;25:480-491. doi: 10.1016/j.pdpdt.2019.02.014. Epub 2019 Feb 12.
Targeted and effective drug transport is becoming an attractive option in cancer therapy since it can improve drug efficacy and reduce drugs' side effects in normal tissues. In addition to using specific surface ligand molecules, the selective drug delivery can be accomplished via enhanced permeability and retention effect. Therefore, in our studies, we entrapped zinc (II) phthalocyanine (ZnPc) - a second generation photosensitizer - in folate-functionalized micelles of the biocompatible, FDA-approved for biomedical application diblock copolymer methoxypoly(ethylene oxide)-b-poly(L-lactide) (mPEG-b-PLLA) and its derivative with folate (FA) attached to the end of PEG chain (FA-PEG-b-PLLA). Dynamic light scattering (DLS) measurements confirmed the micellar size to be <150 nm in diameter, a low polydispersity index, and good colloid stability of the studied nanocarriers, while atomic force microscopy (AFM) was used to study their morphology. The application potential of the resulting micelles was evaluated in cyto- and photocytotoxicity studies in conjunction with intracellular distribution and accumulation imaging of the photosensitizer delivered to ovarian carcinoma (SKOV-3) and metastatic melanoma (Me45) cell lines. Reactive oxygen species generation study was performed after photodynamic reaction, and cellular cytoskeleton reorganization was visualized after undergoing a photodynamic reaction. The results demonstrated that the functionalized polymeric micelles are promising nanocarriers for photodynamic therapy procedures and can be used in anticancer drug delivery.
靶向和有效的药物输送在癌症治疗中变得越来越有吸引力,因为它可以提高药物疗效并降低药物在正常组织中的副作用。除了使用特定的表面配体分子外,还可以通过增强的通透性和保留效应来实现选择性药物输送。因此,在我们的研究中,我们将锌(II)酞菁(ZnPc)-第二代光敏剂-包封在叶酸功能化的胶束中,该胶束由生物相容性的、经美国食品和药物管理局批准用于生物医学应用的嵌段共聚物甲氧基聚(乙二醇)-b-聚(L-丙交酯)(mPEG-b-PLLA)及其在聚乙二醇链末端接有叶酸(FA)的衍生物(FA-PEG-b-PLLA)组成。动态光散射(DLS)测量证实胶束的直径小于 150nm,多分散指数低,所研究的纳米载体具有良好的胶体稳定性,而原子力显微镜(AFM)则用于研究其形态。结合细胞毒性和光细胞毒性研究以及递送至卵巢癌细胞(SKOV-3)和转移性黑色素瘤(Me45)细胞系的光敏剂的细胞内分布和积累成像,评估了所得胶束的应用潜力。在光动力反应后进行了活性氧生成研究,并在经历光动力反应后可视化了细胞细胞骨架的重组。结果表明,功能化的聚合物胶束是有前途的光动力治疗程序的纳米载体,可用于抗癌药物输送。
Int J Mol Sci. 2023-3-15
Pharmaceutics. 2022-8-5