Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany.
J Chem Phys. 2019 Feb 14;150(6):064102. doi: 10.1063/1.5063907.
An approach to systematically construct vibronically and spin-orbit coupled diabatic potential energy surfaces (PESs) for X(P) + CH → HX + CH reactions is proposed. Permutational symmetry and permutational invariants of the S group and its S and S × S subgroups are used to construct a diabatic model which properly describes the reaction starting from reactants to products. As a first example, the approach is applied to the construction of diabatic potentials for the F(P) + CH → HF + CH reaction. The description of the entrance channel relies on a set of vibronically and spin-orbit coupled diabatic PESs previously developed by Westermann et al. [Angew. Chem., Int. Ed. 53, 1122 (2014)]. The same set of diabatic electronic states is also used in the transition state region and all four exit channels. There the lowest adiabatic PES derived from the diabatic model reproduces the CSBB-PES of Czakó et al. [J. Chem. Phys. 130, 084301 (2009)]. Interesting aspects of the newly developed diabatic potential matrix and the corresponding adiabatic PESs are discussed.
提出了一种系统构建 X(P) + CH → HX + CH 反应的振子和自旋轨道耦合非绝热势能面(PES)的方法。S 群及其 S 和 S×S 子群的置换对称性和置换不变量用于构建一个非绝热模型,该模型恰当地描述了从反应物到产物的反应。作为第一个例子,该方法应用于 F(P) + CH → HF + CH 反应的非绝热势能的构建。入口通道的描述依赖于 Westermann 等人之前开发的一组振子和自旋轨道耦合非绝热 PES[Angew. Chem., Int. Ed. 53, 1122 (2014)]。在过渡态区域和所有四个出口通道中,也使用了相同的一组非绝热电子态。在那里,从非绝热模型导出的最低绝热 PES 再现了 Czakó 等人的 CSBB-PES[J. Chem. Phys. 130, 084301 (2009)]。讨论了新开发的非绝热势能矩阵和相应的绝热 PES 的有趣方面。