Suppr超能文献

通过基于质谱的技术监测肽混合物的稳定性。

Monitoring the stabilities of a mixture of peptides by mass-spectrometry-based techniques.

作者信息

Fuller Daniel R, Conant Christopher R, El-Baba Tarick J, Zhang Zhichao, Molloy Kameron R, Zhang Connie S, Hales David A, Clemmer David E

机构信息

1 Department of Chemistry, Indiana University, Bloomington, IN, USA.

2 Department of Chemistry, Hendrix College, Conway, AR, USA.

出版信息

Eur J Mass Spectrom (Chichester). 2019 Feb;25(1):73-81. doi: 10.1177/1469066718798718.

Abstract

Biomolecular degradation plays a key role in proteostasis. Typically, proteolytic enzymes degrade proteins into smaller peptides by breaking amino acid bonds between specific residues. Cleavage around proline residues is often missed and requires highly specific enzymes for peptide processing due to the cyclic proline side-chain. However, degradation can occur spontaneously (i.e. in the absence of enzymes). In this study, the influence of the first residue on the stability of a series of penultimate proline containing peptides, with the sequence Xaa-Pro-Gly-Gly (where Xaa is any amino acid), is investigated with mass spectrometry techniques. Peptides were incubated as mixtures at various solution temperatures (70℃ to 90℃) and were periodically sampled over the duration of the experiment. At elevated temperatures, we observe dissociation after the Xaa-Pro motif for all sequences, but at different rates. Transition state thermochemistry was obtained by studying the temperature-dependent kinetics and although all peptides show relatively small differences in the transition state free energies (∼95 kJ/mol), there is significant variability in the transition state entropy and enthalpy. This demonstrates that the side-chain of the first amino acid has a significant influence on the stability of the Xaa-Pro sequence. From these data, we demonstrate the ability to simultaneously measure the dissociation kinetics and relative transition state thermochemistries for a mixture of peptides, which vary only in the identity of the N-terminal amino acid.

摘要

生物分子降解在蛋白质稳态中起着关键作用。通常,蛋白水解酶通过断裂特定残基之间的氨基酸键将蛋白质降解为较小的肽段。由于脯氨酸的环状侧链,脯氨酸残基周围的切割常常被遗漏,并且需要高度特异性的酶来进行肽段加工。然而,降解也可以自发发生(即在没有酶的情况下)。在本研究中,使用质谱技术研究了第一个残基对一系列含有倒数第二个脯氨酸的肽段(序列为Xaa-Pro-Gly-Gly,其中Xaa为任何氨基酸)稳定性的影响。将肽段作为混合物在不同的溶液温度(70℃至90℃)下孵育,并在实验过程中定期取样。在高温下,我们观察到所有序列在Xaa-Pro基序之后都会发生解离,但速率不同。通过研究温度依赖性动力学获得了过渡态热化学信息,尽管所有肽段在过渡态自由能方面显示出相对较小的差异(约95 kJ/mol),但在过渡态熵和焓方面存在显著差异。这表明第一个氨基酸的侧链对Xaa-Pro序列的稳定性有显著影响。从这些数据中,我们证明了能够同时测量仅在N端氨基酸身份上有所不同的肽段混合物的解离动力学和相对过渡态热化学性质。

相似文献

1
Monitoring the stabilities of a mixture of peptides by mass-spectrometry-based techniques.
Eur J Mass Spectrom (Chichester). 2019 Feb;25(1):73-81. doi: 10.1177/1469066718798718.
2
Influence of N Terminus Amino Acid on Peptide Cleavage in Solution through Diketopiperazine Formation.
J Am Soc Mass Spectrom. 2022 Aug 3;33(8):1368-1376. doi: 10.1021/jasms.2c00037. Epub 2022 May 16.
3
Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages.
J Am Soc Mass Spectrom. 2019 Jun;30(6):919-931. doi: 10.1007/s13361-019-02159-w. Epub 2019 Apr 12.
5
On the split personality of penultimate proline.
J Am Soc Mass Spectrom. 2015 Mar;26(3):444-52. doi: 10.1007/s13361-014-1049-y. Epub 2014 Dec 12.
7
Diketopiperazine Formation from FPGK ( = 1-9) Peptides: Rates of Structural Rearrangements and Mechanisms.
J Phys Chem B. 2021 Jul 29;125(29):8107-8116. doi: 10.1021/acs.jpcb.1c03515. Epub 2021 Jul 16.
8
Penultimate proline in neuropeptides.
Anal Chem. 2015 Aug 18;87(16):8466-72. doi: 10.1021/acs.analchem.5b01889. Epub 2015 Jul 29.
9
Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions.
Biopolymers. 1998 Apr;45(5):381-94. doi: 10.1002/(SICI)1097-0282(19980415)45:5<381::AID-BIP6>3.0.CO;2-H.
10

引用本文的文献

1
Evolution of branched peptides as novel biomaterials.
J Mater Chem B. 2025 Feb 12;13(7):2226-2241. doi: 10.1039/d4tb01897d.
2
Influence of N Terminus Amino Acid on Peptide Cleavage in Solution through Diketopiperazine Formation.
J Am Soc Mass Spectrom. 2022 Aug 3;33(8):1368-1376. doi: 10.1021/jasms.2c00037. Epub 2022 May 16.
3
Diketopiperazine Formation from FPGK ( = 1-9) Peptides: Rates of Structural Rearrangements and Mechanisms.
J Phys Chem B. 2021 Jul 29;125(29):8107-8116. doi: 10.1021/acs.jpcb.1c03515. Epub 2021 Jul 16.
4
Melting of Hemoglobin in Native Solutions as measured by IMS-MS.
Anal Chem. 2020 Feb 18;92(4):3440-3446. doi: 10.1021/acs.analchem.9b05561. Epub 2020 Feb 7.

本文引用的文献

2
Conformationally Regulated Peptide Bond Cleavage in Bradykinin.
J Am Chem Soc. 2018 Aug 1;140(30):9357-9360. doi: 10.1021/jacs.8b04751. Epub 2018 Jul 23.
3
Long-Lived Intermediates in a Cooperative Two-State Folding Transition.
J Phys Chem B. 2016 Dec 1;120(47):12040-12046. doi: 10.1021/acs.jpcb.6b08932. Epub 2016 Nov 21.
4
Old Proteins in Man: A Field in its Infancy.
Trends Biochem Sci. 2016 Aug;41(8):654-664. doi: 10.1016/j.tibs.2016.06.004. Epub 2016 Jul 11.
5
Enthalpy-Entropy Compensation (EEC) Effect: A Revisit.
J Phys Chem B. 2015 Dec 31;119(52):15876-84. doi: 10.1021/acs.jpcb.5b09925. Epub 2015 Dec 17.
6
Penultimate proline in neuropeptides.
Anal Chem. 2015 Aug 18;87(16):8466-72. doi: 10.1021/acs.analchem.5b01889. Epub 2015 Jul 29.
7
Configurationally-Coupled Protonation of Polyproline-7.
J Am Chem Soc. 2015 Jul 15;137(27):8680-3. doi: 10.1021/jacs.5b04287. Epub 2015 Jul 1.
8
Infrared Spectroscopy of Mobility-Selected H+-Gly-Pro-Gly-Gly (GPGG).
J Am Soc Mass Spectrom. 2015 Sep;26(9):1444-54. doi: 10.1007/s13361-015-1172-4. Epub 2015 Jun 20.
9
On the split personality of penultimate proline.
J Am Soc Mass Spectrom. 2015 Mar;26(3):444-52. doi: 10.1007/s13361-014-1049-y. Epub 2014 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验