Suppr超能文献

d 维复杂网络的标度性质。

Scaling properties of d-dimensional complex networks.

机构信息

International Institute of Physics, Universidade Federal do Rio Grande do Norte, Campus Universitário, Lagoa Nova, Natal-RN 59078-970, Brazil.

Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-900, Brazil.

出版信息

Phys Rev E. 2019 Jan;99(1-1):012305. doi: 10.1103/PhysRevE.99.012305.

Abstract

The area of networks is very interdisciplinary and exhibits many applications in several fields of science. Nevertheless, there are few studies focusing on geographically located d-dimensional networks. In this paper, we study the scaling properties of a wide class of d-dimensional geographically located networks which grow with preferential attachment involving Euclidean distances through r_{ij}^{-α_{A}} (α_{A}≥0). We have numerically analyzed the time evolution of the connectivity of sites, the average shortest path, the degree distribution entropy, and the average clustering coefficient for d=1,2,3,4 and typical values of α_{A}. Remarkably enough, virtually all the curves can be made to collapse as functions of the scaled variable α_{A}/d. These observations confirm the exist- ence of three regimes. The first one occurs in the interval α_{A}/d∈[0,1]; it is non-Boltzmannian with very-long-range interactions in the sense that the degree distribution is a q exponential with q constant and above unity. The critical value α_{A}/d=1 that emerges in many of these properties is replaced by α_{A}/d=1/2 for the β exponent which characterizes the time evolution of the connectivity of sites. The second regime is still non-Boltzmannian, now with moderately-long-range interactions, and reflects in an index q monotonically decreasing with α_{A}/d increasing from its critical value to a characteristic value α_{A}/d≃5. Finally, the third regime is Boltzmannian-like (with q≃1) and corresponds to short-range interactions.

摘要

网络领域非常跨学科,在多个科学领域都有许多应用。然而,很少有研究关注地理位置的 d 维网络。在本文中,我们研究了一类广泛的具有优先附着特性的地理位置网络的标度特性,这种网络通过 r_{ij}^{-α_{A}}(α_{A}≥0)与欧几里得距离相关联而生长。我们数值分析了站点连接的时间演化、平均最短路径、度分布熵和平均聚类系数,d=1、2、3、4 和典型的 α_{A}值。值得注意的是,几乎所有的曲线都可以作为标度变量 α_{A}/d 的函数进行收缩。这些观察结果证实了存在三个区域。第一个区域发生在 α_{A}/d∈[0,1] 区间内;它是非玻尔兹曼的,具有非常长程的相互作用,因为度分布是一个 q 指数,q 常数大于 1。许多这些性质中出现的临界值 α_{A}/d=1 被用于描述站点连接的时间演化的β指数的特征值 α_{A}/d=1/2 所取代。第二个区域仍然是非玻尔兹曼的,现在具有适度长程相互作用,反映在 q 指数单调递减,随着 α_{A}/d 从其临界值增加到特征值 α_{A}/d≃5。最后,第三个区域类似于玻尔兹曼(q≃1),对应于短程相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验