Suppr超能文献

一项表型全基因组关联研究揭示了凝血因子 X 在感染过程中的病理作用。

A Phenome-Wide Association Study Uncovers a Pathological Role of Coagulation Factor X during Infection.

机构信息

Department of Pathology, Microbiology, & Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, USA.

出版信息

Infect Immun. 2019 Apr 23;87(5). doi: 10.1128/IAI.00031-19. Print 2019 Mar.

Abstract

Coagulation and inflammation are interconnected, suggesting that coagulation plays a key role in the inflammatory response to pathogens. A phenome-wide association study (PheWAS) was used to identify clinical phenotypes of patients with a polymorphism in coagulation factor X. Patients with this single nucleotide polymorphism (SNP) were more likely to be hospitalized with hemostatic and infection-related disorders, suggesting that factor X contributes to the immune response to infection. To investigate this, we modeled infections by human pathogens in a mouse model of factor X deficiency. Factor X-deficient mice were protected from systemic infection, suggesting that factor X plays a role in the immune response to Factor X deficiency was associated with reduced cytokine and chemokine production and alterations in immune cell population during infection: factor X-deficient mice demonstrated increased abundance of neutrophils, macrophages, and effector T cells. Together, these results suggest that factor X activity is associated with an inefficient immune response and contributes to the pathology of infection.

摘要

凝血和炎症相互关联,这表明凝血在病原体引起的炎症反应中起着关键作用。一项表型全基因组关联研究(PheWAS)用于鉴定凝血因子 X 基因突变患者的临床表型。具有这种单核苷酸多态性(SNP)的患者更有可能因止血和感染相关疾病住院,这表明因子 X 有助于对感染的免疫反应。为了研究这一点,我们在因子 X 缺乏的小鼠模型中模拟了人类病原体感染。因子 X 缺乏的小鼠对系统性感染有保护作用,这表明因子 X 在免疫反应中发挥作用。因子 X 缺乏与感染期间细胞因子和趋化因子产生减少以及免疫细胞群体改变有关:因子 X 缺乏的小鼠中性粒细胞、巨噬细胞和效应 T 细胞的丰度增加。总之,这些结果表明因子 X 的活性与低效的免疫反应有关,并导致感染的病理变化。

相似文献

1
A Phenome-Wide Association Study Uncovers a Pathological Role of Coagulation Factor X during Infection.
Infect Immun. 2019 Apr 23;87(5). doi: 10.1128/IAI.00031-19. Print 2019 Mar.
2
Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection.
Infect Immun. 2015 Oct;83(10):4134-41. doi: 10.1128/IAI.00410-15. Epub 2015 Aug 3.
3
Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection.
PLoS One. 2012;7(6):e40019. doi: 10.1371/journal.pone.0040019. Epub 2012 Jun 29.
6
A lethal pneumonia model of Acinetobacter baumannii: an investigation in immunocompetent mice.
Clin Microbiol Infect. 2019 Apr;25(4):516.e1-516.e4. doi: 10.1016/j.cmi.2018.12.020. Epub 2018 Dec 22.
7
Tug of war between Acinetobacter baumannii and host immune responses.
Pathog Dis. 2018 Dec 1;76(9). doi: 10.1093/femspd/ftz004.
8
Nod2 is required for the early innate immune clearance of Acinetobacter baumannii from the lungs.
Sci Rep. 2017 Dec 12;7(1):17429. doi: 10.1038/s41598-017-17653-y.
9
Analysis of Immune Responses in -Infected Klotho Knockout Mice: A Mouse Model of Infection in Aged Hosts.
Front Immunol. 2020 Nov 23;11:601614. doi: 10.3389/fimmu.2020.601614. eCollection 2020.
10
Intranasal immunization protects against Acinetobacter baumannii-associated pneumonia in mice.
Vaccine. 2015 Jan 1;33(1):260-7. doi: 10.1016/j.vaccine.2014.02.083. Epub 2014 Mar 31.

引用本文的文献

1
Characterization of Kunitz-Domain Anticoagulation Peptides Derived from Exotoxin Protein F6W77.
Toxins (Basel). 2024 Oct 21;16(10):450. doi: 10.3390/toxins16100450.
3
Assessing the Role of Cold-Shock Protein C: a Novel Regulator of Acinetobacter baumannii Biofilm Formation and Virulence.
Infect Immun. 2022 Oct 20;90(10):e0037622. doi: 10.1128/iai.00376-22. Epub 2022 Sep 19.
4
Association of genetic variations in ACE2, TIRAP and factor X with outcomes in COVID-19.
PLoS One. 2022 Jan 7;17(1):e0260897. doi: 10.1371/journal.pone.0260897. eCollection 2022.
5
Human and Machine Intelligence Together Drive Drug Repurposing in Rare Diseases.
Front Genet. 2021 Jul 28;12:707836. doi: 10.3389/fgene.2021.707836. eCollection 2021.
6
Host genetics and infectious disease: new tools, insights and translational opportunities.
Nat Rev Genet. 2021 Mar;22(3):137-153. doi: 10.1038/s41576-020-00297-6. Epub 2020 Dec 4.
7
Host Innate Immune Responses to Infection.
Front Cell Infect Microbiol. 2020 Sep 14;10:486. doi: 10.3389/fcimb.2020.00486. eCollection 2020.

本文引用的文献

2
The coagulation system in host defense.
Res Pract Thromb Haemost. 2018 May 24;2(3):549-557. doi: 10.1002/rth2.12109. eCollection 2018 Jul.
3
Genotyping of five Pakistani patients with severe inherited factor X deficiency: identification of two novel mutations.
Blood Coagul Fibrinolysis. 2018 Nov;29(7):622-625. doi: 10.1097/MBC.0000000000000764.
5
Disease Heritability Studies Harness the Healthcare System to Achieve Massive Scale.
Cell. 2018 Jun 14;173(7):1568-1570. doi: 10.1016/j.cell.2018.05.053.
7
Expanding the paradigm for the outer membrane: Acinetobacter baumannii in the absence of endotoxin.
Mol Microbiol. 2018 Jan;107(1):47-56. doi: 10.1111/mmi.13872. Epub 2017 Nov 20.
9
Coagulation factor XI improves host defence during murine pneumonia-derived sepsis independent of factor XII activation.
Thromb Haemost. 2017 Jul 26;117(8):1601-1614. doi: 10.1160/TH16-12-0920. Epub 2017 May 11.
10
Accelerating Precision Drug Development and Drug Repurposing by Leveraging Human Genetics.
Assay Drug Dev Technol. 2017 Apr;15(3):113-119. doi: 10.1089/adt.2016.772. Epub 2017 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验